
Report on the ATLAS TDAQ Large Scale
Tests 2006

27 April 2007

Contributors:
Doris Burckhart, Sarah Demers, Haleh Hadavand, Sergei Kolos, Joerg Stelzer, Serge Sushkov, Lourenco
Vaz, Hans Von Der Schmitt, Haimo Zobernig, scholtes.
TWiki to PDF Converter TWiki2pdf Version 2.3.1 by Steve Lloyd.

Copyright c© 2004-2007 by the contributing authors.

http://hepwww.ph.qmul.ac.uk/twiki2pdf


Contents

1 Abstract 1

2 The Large Scale Tests 2006 2

2.1 Scope, Aims and Testbed description of LST 2006 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2.1.1 Software releases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2.1.2 Aim of the DAQ infrastructure tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2.1.3 Aim of the Event Filter infrastructure tests . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2.1.4 Aim of the HLT tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1.5 Database test aims . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1.6 Testbed Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1.7 Test Organisation and Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Operational Sequence for the State Transition Timing Measurements . . . . . . . . . . . . . . . . . 5

2.3 Tools for Test Execution and Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.3.2 Tools and Utilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.3.3 Test execution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3 Online Databases Used in the Tests 9

3.1 Database Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.1.1 Servers available . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.1.2 Databases and connection strings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.1.3 Location of files on /afs and local /pool . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.1.4 Data volumes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

ii



CONTENTS CONTENTS

3.1.5 dblookup and authentication files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.1.6 Tools used to populate the databases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.1.7 Things to remember... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.2 ATLAS DBProxy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.2.2 Proxy Trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.2.3 Usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.2.4 Recognized Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.2.5 Example Implementation in a Partition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.2.6 Timing Studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.2.7 Comments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4 Configuration of the High Level Trigger through the TriggerDB 20

4.1 Configuration of the High Level Trigger through the Trigger Configuration Database (the TriggerDB) 20

4.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4.3 Configuration Technology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4.3.1 The Trigger Configuration Database . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4.3.2 Configuring the Level 2 and EventFilterTrigger Applications . . . . . . . . . . . . . . . . . . 20

4.4 Large Scale Test Objectives and Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4.4.1 Goals of the trigger configuration group during the Large Scale Tests 2006 . . . . . . . . . . 21

4.4.2 Preparation of the TriggerDB and OKS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4.4.3 Test Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4.4.4 Encountered Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

5 Tests with DBStressor 23

5.1 Tests of ROD configuration from Oracle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

5.1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

5.1.2 Main heading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

5.2 DBProxy tests with DBStressor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

5.2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

iii

https://twiki.cern.ch/twiki/bin/view/Atlas//TrigConfDocu


CONTENTS CONTENTS

5.2.2 Test Setup and Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

5.2.3 Results and Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

6 Level 2 Tests 25

6.1 Trigger Level 2 tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

6.1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

6.1.2 Basic ”stop watch” measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

6.1.3 Measurements of DbProxy connect/disconnect . . . . . . . . . . . . . . . . . . . . . . . . . 26

7 Event Filter Tests 28

7.1 Event Filter tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

7.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

7.3 Main goals for EventFilter@ LST06 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

7.4 Program of tests for EventFilter@ LST06 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

7.5 Particular Tests Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

7.6 Lessons and Follow-Up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

7.7 Overall Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

8 DAQ and HLT Infrastructure Startup and Fault Tolerance Notes 40

8.1 DAQ, HLT and EB Infrastructure
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

8.1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

8.1.2 State Transition Timing Measurements of the Infrastructure . . . . . . . . . . . . . . . . . . 41

8.1.3 Problems found and remarks to Fault Tolerance . . . . . . . . . . . . . . . . . . . . . . . . . 42

9 Monitoring Tests 48

9.1 IS, EMON, and Gatherer tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

9.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

9.3 Gatherer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

9.3.1 Program of Tests for Gatherer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

9.3.2 Configuration of Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

iv



CONTENTS CONTENTS

9.3.3 Timing Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

9.3.4 Summary and Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

9.4 Information Service (IS) tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

9.4.1 Test description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

9.4.2 Tests Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

9.4.3 Summary and Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

9.5 Event Monitoring (EMon) Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

9.5.1 Test description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

9.5.2 Test Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

9.5.3 Summary and Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

10 Summary, Conclusions and Follow-up Actions 64

10.1 Summary, Conclusions and Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

10.1.1 Introduction - under construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

10.1.2 Summary and Conclusions - under construction
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

10.1.3 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

v



Chapter 1

Abstract

This document provides a detailed report on the DAQ/HLT integrated Large Scale and Performance Tests which were
performed in November/December 2006 on the CERN IT LXBATCH cluster. DAQ/HLT System Software tests as
well as component tests were run on a PC farm size of up to 950 nodes. The integrated system under test included the
Infrastructure Software for Controls and Communication, Level 2 trigger software and Event Filter software including
algorithms, with emphasis on HLT and Online Databases. Results are presented, compared to previous tests where
applicable and suggestions for the further development and future tests are discussed.

References
Ref1 Report of LST 2005 - ATL-D-TR-0003
Ref2 ...

1

https://edms.cern.ch/cedar/plsql/doc.info?cookie=4865962&document_id=685256


Chapter 2

The Large Scale Tests 2006

2.1 Scope, Aims and Testbed description of LST 2006

The ATLAS Data Acquisition (DAQ) and High-Level Triggers (HLT) system will be comprised initially of ∼2000 or
more PC nodes which take part in the control, event readout, second level trigger and event filter operations. A
first series of tests of the integrated DAQ/HLT system was performed successfully in summer 2005 at CERN on a
farm size of up to 700 PC dual processor nodes over a period of 5 weeks. The need for further large-scale tests was
identified and another series of tests is planned. The Large Scale Tests (LST) 2006 took place in the 4th quarter of
2006, starting at the end of October. A period of four weeks with a cluster increasing in steps from 400 to 800 and
finally 1200 nodes has been made available.

The tests were done at CERN at the LXBATCH facility. The CERN IT support team delivered to us the operating
system management and support of the farm.

The Atlas DAQ/HLT infrastructure software, the Level2 and EF algorithms and the Online Databases will be under
test. Sub-systems will run tests exercising their system in order to verify its functionality and to optimise parameters
and the layout. The integrated software system will be run as complete as it will be possible at the time of the tests.

The complete Trigger and Data Flow system in ATLAS is foreseen to involve about 2000 PCs. The planned availability
of about 1200 PCs for LST 2006 allow constructing partitions with systems up to about 60% of the full ATLAS scale.
The tests include the online database access by the HLT nodes for configuration of the Trigger from the Trigger
configuration database, the geometry of the detector, and the read access for the configuration of the RODs.

2.1.1 Software releases

Offline-12.0.3-LST-1, initially TDAQ-01-06-01 and later TDAQ-01-06-02 , and the HLT release HLT2.0.3-LST-1
were used for the Large Scale Tests. The offline release was derived from 12.0.3 which became available in October.
Several patches were applied during the LST and were entered into the subsequent offline releases.

2.1.2 Aim of the DAQ infrastructure tests

Infrastructure tests were performed with the aim of verifying the principle functionaliy of the infrastructure which is
needed to allow the other sub-systems and the integrated system to run on the large scale. Given the overall TDAQ
installation and commissioning schedule, DAQ specific tests were not planned for the LST but not excluded.

2.1.3 Aim of the Event Filter infrastructure tests

The general goal was to verify the functionality of the EventFilter infrastructure in TDAQ release 01-06, i.e. Event
Filter without algorithms. This includes verification of EF specific changes (e.g. changes in EFIO protocol) and
general changes (e.g. templated applications). The subsequent goal was to measure the response time of the EF
subsystem during the state transitions Configure, PrepareForRun / Start and Stop of the TDAQ Run Control, in

2

https://twiki.cern.ch/twiki/bin/view/Atlas//EventFilter


CHAPTER 2. THE LARGE SCALE TESTS 20062.1. SCOPE, AIMS AND TESTBED DESCRIPTION OF LST 2006

order to have a baseline measurement for the subsequent tests with algoritms. The transition times can be compared
with those seen during the LST 2005. Note that there is considerable overlap with LVL2 and HLT algorithm tests.

Event building infrastructure tests have already been performed successfully at LST05 up to the required scale needed
for the running of the Atlas experiment. Eventbuilding performance tests can only be exercised on a system providing
adequate network topology and are being followed up at the installation in Point1. Therefore, no special EB tests
are foreseen for LST06.

2.1.4 Aim of the HLT tests

The general goal is to measure the response time of the Level2 subsystem during the state transitions mentioned
above. This should be done with as many trigger Algorithms as possible, and with a realistic way of accessing the
involved data bases. The access to databases and associated files is, besides the interaction with Run Control, the
one major aspect of running the HLT algorithms in Level2 and Event Filter that represents possible contention for
resources across the HLT farms.

Note that to a large extent the aims and programs are the same for both L2 and EF, and thus considered together
as HLT-common. However, there are some specific issues:
• For L2: additional performance studies on Data Collection and event building aspects
• For EF: possible additional test of calibration algorithms, and EFIO tuning.

2.1.5 Database test aims

Purpose of database usage in the LST

Test the performance of the various data paths involved between database servers, file servers, and the clients.
Concentrate on the accesses which are likely the most demanding ones:
• Configuration of the HLT, both LVL2 and EF, including reading the job configuration from the trigger con-

figuration DB, and reading the large amount of extra configuration data (patly from DB, partly from POOL
files). Each of the L2 nodes and each of the EF nodes gets the same data, resp. Major system components
used here are data replication, caching, or sharing mechanisms for DB contents and POOL files. This requires
a number of nodes comparable to the number to be used at Point1 in 2007 datataking.

• For all detectors, emulation of DB read access with realistic estimates for data loads. This is in addition to
the specific configuration of the trigger and of the calorimetry.

• Configuration of the calorimetry RODs, mainly reading pedestals and and optimal filtering coefficients. Each
ROD gets different data so caching is not useful. An Athena-based server mechanism is mediating between
the DB and the clients. This does not require a large number of nodes, but all the infrastructure to host the
LAr RODs.

Access to the DCS database, though required during configuration, is not within the scope of LST 2006.

Context of the LST: related tests targeted at databases

The database infrastructure is used in both offline and online contexts. Apart from the LST, several other tests
involving databases are in progress or planned:
• Database replication using the Oracle proprietary ”Oracle Streams” mechanism is being excercised between the

online (ATONR) and the offline (ATLR) Oracle servers, between Tier0 and the Tier1s, as well as from the MDT
calibration centres to Tier0. The contents replicated is conditions data and TAG data. Databse replication is
always accompanied by replication of files using the distributed data management implementation, DQ2.

• The TAG database provides metadata for selection of event samples for analyses. The large number of rows
(10**9 events/year, corresponding to 200 Hz insertion rate into the database) is demanding. Some 200
metadata columns need to be indexed. The TAG mechanism is being exercised at present.

• The Data Streaming tests are part of the CSC (computing system commissioning) tests. Data streaming and
luminosity blocks for RAW, ESD, AOD, and TAG data will be exercised for different streaming scenarios in

3



2.1. SCOPE, AIMS AND TESTBED DESCRIPTION OF LST 2006CHAPTER 2. THE LARGE SCALE TESTS 2006

order to assess the impact on analyses. The streaming tests involve the generation of bytestream data from
simulated data, including trigger and luminosity block information in the event headers, and writing out such
data from a SFO to Tier0.

• The detector commissioning runs and cosmics data taking makes use of the overall system from DAQ to
analysis, including databases, with increasing complexity as more detectors join in. It is proposed to complement
the testing of the overall system with a ”Full Dress Rehearsal” which would be based on simulated data (like
in the Data Streaming tests) fed into some stage of TDAQ. The system installed at Point1, together with the
offline Tiers, will be used in both cases.

2.1.6 Testbed Description

The testbed was similar to the one used for the June/July 2005 tests. Up to 1000 PCs of the CERN IT LXBATCH
testbed were used. All nodes were time synchronized via ntp . They were equipped with 2.4 GHz and 2.8 GHz
Dual Pentium III processors, at least 1 GByte of memory running the Cern SLC4 operating system installation with
selected system parameters adjusted to the needs of the tests. As there was no dedicated common file system such as
NFS available for the nodes, the Software was replicated on the local disk of each PC. The TDAQ, HLT and Offline
releases were packed together into a so-called image file and distributed with the farm tools. In addition, the release
tdaq-01-06-02 including some patches was prepared as an RPM and distributed via the IT distribution mechanism.
Afs was used for initial tests and to help installing the software. A few selected processes were run also from afs.
The PCs were connected in groups of 22 via Fast Ethernet to local Fast Ethernet switches. Those were connected
via Gigabit Ethernet uplinks to Gigabit Ethernet switchesthemselves being connected to the CERN network switching
routers.The exact topology of the system is given in Figure 1. There was an installation phase on a set of 20 nodes
before the tests started. The number of dual pc nodes available during the tests were increased throughout the
testing period as listed below. The number of nodes which were operational was at most times significantly less then
the number of nodes which were assigned to the tests. This was due to a number of technical problems on the side
of the operating system installation.

• Phase 1: 8. November: 244 nodes available; 400 nodes assigned

• Phase 2: 14. November: 397 nodes available from ; 21st of Nov. 537 marked as up, 859 assigned

• Phase 3: 26. November to 10. December: 950 available, 1250 assigned

The Topology of the Test Bed is described in the followind diagram.

Figure 1 Topology of the LXBATCH testbed

4



CHAPTER 2. THE LARGE SCALE TESTS 20062.2. OPERATIONAL SEQUENCE FOR THE STATE TRANSITION TIMING MEASUREMENTS

2.1.7 Test Organisation and Approach

A team of HLT/DAQ testers and developers established the planning for the tests which was presented and discussed
in the HLT/DAQ community. A working web page was established containing organisational information, details on
testing tools and parameter settings, a description of the testbed and its layout, testbed testing time scheduling,
meeting information, and the entry to the online test logbook. During the tests, regular short meetings were held
to inform the test participants on the latest status and to discuss problems where necessary. For system integration,
debugging and system tuning the test cluster shared among the testers. Timing measurements were run in exclusive
mode, then the use of the PC farm was dedicated to a particular test only.

Complete:
Responsible: Doris Burckhart
Author: Doris Burckhart 18 Dec 2006
Contributors: Doris Burckhart, Hans Von Der Schmitt
Last significantly modified by: Doris Burckhart 23 Jan 2007
Not yet reviewed

2.2 Operational Sequence for the State Transition Timing Measurements

The information on all the processes controlled by the Online System including their relationships, the Run
Control hierarchy in the online system as well as start-up and shutdown dependencies is defined in the
configuration database data file. A database data file which represents the partition was used to drive

5



2.2. OPERATIONAL SEQUENCE FOR THE STATE TRANSITION TIMING MEASUREMENTSCHAPTER 2. THE LARGE SCALE TESTS 2006

the tests involving all the components. Starting with booted but idle machines, the tests simulate the
start of data taking activities by creating all the necessary processes in the defined order and then cycling
the system through the states prescribed by the Run Control to simulate a data taking activity. At the
end of these cycles, the system is shut-down in an orderly manner and all the DAQ related processes are
destroyed. Timing values were written to a file and subsequently analysed. The configuration database
schema allows to define segments to establish a Run Control hierarchy consisting of a number of detectors.
Timing measurements were performed for the operator transitions and the internal breakdown on the
synchronisation transitions. The operator transitions are defined as follows:

• Setup: start online system infrastructure including the root controller

• Close: remove online system infrastructure.

• Boot: start all supervised processes.

• Shutdown: stop all supervised processes.

• Configure: all progesses connect and are configured with their paramaters which mostly are read
from databases

• Unconfigure: The processes unconfigure and disconnect

• Start: once all processes are started and configured the controllers and controlled processes go to
the Running state.

• Stop: The controllers and processes go to the Configure state; the event flow is stopped in an orderly
manner

The analysis of the setup, boot, shutdown and close times allows to test the process management and the
initialization of Online Software System components (configuration). The state transitions give information
on the communication overhead in the system.measurements were also recorded for the

The following graph illustrates the operator transitions. The individual transitions for each step are listed
below.

6



CHAPTER 2. THE LARGE SCALE TESTS 20062.3. TOOLS FOR TEST EXECUTION AND ANALYSIS

Complete:
Responsible:
Author: Doris Burckhart 29 Jan 2007
Contributors: Doris Burckhart
Last significantly modified by: Doris Burckhart 29 Jan 2007
Not yet reviewed

2.3 Tools for Test Execution and Analysis

2.3.1 Introduction

2.3.2 Tools and Utilities

Many individual tools and utilities were used for running the tests. There were automatic execution scripts,
analysis tools, farm management tools, command line execution on multiple hosts, and checks on the
correct functioning of the running DAQ/HLT system.

PartitionMaker was mostly used to generate the partition. Some partitions however were prepared man-
ually and the older tool DBGeneration was upgraded for tdaq-01-06-02 by a tester for the use limited to
DBStressor.was used for preparing and executing the HLT test runs. The hardware description file for the
farm was prepared with the farm tools and the IT tool wassh helped for farm checking and the distribution
of files. opmon recorded the state transition times and allowed for their analysis and comparison.

7

https://twiki.cern.ch/twiki/bin/view/Atlas//PartitionMaker


2.3. TOOLS FOR TEST EXECUTION AND ANALYSISCHAPTER 2. THE LARGE SCALE TESTS 2006

2.3.3 Test execution

setup daq options:

• Measures timing of the state transitions using the options: -tt -ng
• Measures timing of the state transitions using the text gui allows for more flexibility.

◦ New option ’r’ to start/wait/stop from connect state
◦ Any allowed sequence of transitions can be concatenated
◦ Can be used in automatic mode, for example:

echo ” bfstudqMyTests ” | s e t u p d a q −p $TDAQ PARTITION −ng −ut −nc $TEXT GUI PATH/
t e x t g u i

• ’time’ option as was in use at LST05

Test execution based on a Phyton driver by Andre dos Anjos

This is described at PartitionRunner.

OPMON: Monitoring and Analysis for Run Control State Transition Timings

OPMON is a tool set to monitor, record, view and analyse run control state transitions. It is aimed to
be used as a help for testing, verification and system tuning at small scale and large scale and in the
installation at Point1. OPMON has three components:
• opmon monitor monitors the timing of the state transitions, records the values in a root file and

publishes them optionally in OH.
• opmon merger allows to merge root files which result from different datataking sessions.
• opmon analyser is the tool to be used once the datataking session is terminated. Based on one or

more root files which are written by the opmon monitor, the timings of the state transitions of all or
a selection of controllers and controlled applications can be viewed in a variety of combinations in
histograms or graphs. The results from several result files can be compared.

Detais are found in OPMON documentation.

Last year’s Analysis tool is described at LST05Analysis.

Complete:
Responsible: Doris Burckhart
Author: Doris Burckhart 29 Jan 2007
Contributors: Doris Burckhart
Last significantly modified by: Doris Burckhart 29 Jan 2007
Not yet reviewed

8

http://atlas-tdaq-large-scale-tests.web.cern.ch/atlas%2Dtdaq%2Dlarge%2Dscale%2Dtests/June2005Tests/tools_for_tests.htm
http://pcuw32/svn/runner/trunk/README PartitionRunner
https://twiki.cern.ch/twiki/bin/view/Atlas/OperationalMonitoring#OPMON
http://atlas-tdaq-large-scale-tests.web.cern.ch/atlas%2Dtdaq%2Dlarge%2Dscale%2Dtests/June2005Tests/tools_for_tests.htm#Analysis_Tools_


Chapter 3

Online Databases Used in the Tests

3.1 Database Support

The first paragraph gives the overview. More detail, including sheel commands used etc. is given in the
following paragraphs which can easily be skipped for an overview. The last paragraphs lists problems met
during the LST - either fixed already or remaining as action items.

3.1.1 Servers available

All data are made available on Oracle, MySQL, AtlasDBProxy based on MySQL, and SQLite (with the
exception mentioned below).

• For Oracle, the LST uses the ATLAS Online RAC, which has server name ATONR. It is located in the
CERN IT premises and is maintained by IT, as will be the case for production data taking. ATONR
is at present connected to the CERN Public Network which will be changed after the LST to the
ATLAS Technical Control Network ATCN. Oracle ATONR will be the primary source of all database
contents needed online in production data taking. It has at present two server nodes which will be
upgraded to six in early 2007. ATONR is the only database server where data are written to during
data taking, e.g. DCS data.

• The MySQL server is running on one of the machines given to the LST by IT (lxmrra3801). Another
server with the same data contents is running on lxmrra3804 and can be used in case the first one
dies. MySQL server contents is read only. production running, the MySQL server will be replaced
by SQL Relay which then connects to the Oracle server. While there are several options, this is the
most likely solution and it has been already studied and verified.

• Each DBProxy behaves as a MySQL server but does caching of the data already requested. There will
be many servers running - on the top level, at rack level, and for the EF also at node level. DBProxy
is the main mechanism to serve data fast enough to the many HLT clients which all need the same
data so caching can be fully exploited. There is a DBProxy server reserved for testing purposes at
the LST (lxb5438). DBProxy is based on the open MySQL protocols as Oracle protocols are not
made public. CORAL is used by the clients to connect to any MySQL, including the DBProxy. The
top DBProxy can connect to Oracle via SQL Relay which can speak MySQL on the client side, and
Oracle on the server side.

• All database contents needed is also available as (read only) SQLite files, with the exception mentioned
of the Trigger Configuration DB which is not available on SQLite. For production data taking, it is
planned access stable data (e.g. the geometry) from SQLite.

The figure below gives an overview of the database servers, file servers, and clients involved. The network
structure available does not resemble exactly the structure present at Point1; ”rack” in the LST means
network switch level where a switch is responsible for about 60 nodes, while in production data taking,

9

http://www.oracle.com/
http://dev.mysql.com/
http://www.sqlite.org/


3.1. DATABASE SUPPORT CHAPTER 3. ONLINE DATABASES USED IN THE TESTS

it means the physical rack housing about 30 nodes. ”Rack” servers were made available for RDB and
DBProxy. There was no equivalent of a distributed file system on rack level, just afs as global file system.
Hence the files were placed on each node’s local disk. Data contents was as follows:

• Data in databases are: COOL conditions data used for configuration, geometry, and trigger configu-
ration

• Data in files are: POOL payloads for COOL, magentic field map

• As well as SQLite files for COOL and geometry data, serving as an alternative access to database
data.

For the future SQL Relay solution, replace the MySQL server with SQL Relay, and the connections to
Oracle by ”pull” arrows.

3.1.2 Databases and connection strings

The database contents covers conditions data (COOL), geometry data, and trigger configuration data.

• COOL data
These are the bulk of all database data which moreover change with relatively high rate, at least on
a daily basis for the purposes of HLT running. Thus they must be distributed from a life database,
and via a set of caches for efficiency.

◦ Logical database names are by convention COOL xxx where xxx is a detector name. Canonical
values for xxx are INDET, PIXEL, SCT, TRT, LAR, TILE, MUON, MUONALIGN, MDT
as well as TDAQ, DCS, GLOBAL. The COOL ”database” (i.e. top folder) name for these is
OFLP130. In addition we have XPTWK130 and LAROTEST - the former for Athena-server
based configuration of LAr RODs, the latter for LAr ROD and trigger configuration directly
from the database.

10



CHAPTER 3. ONLINE DATABASES USED IN THE TESTS 3.1. DATABASE SUPPORT

◦ For LST, all logical databases are contained in one schema per technology. The COOL con-
nection strings to OFLP130 for Oracle, MySQL, DBProxy, SQLite, and logical connections are,
resp.

o r a c l e : / /ATONR; schema=ATLAS COOL LST ; u s e r=ATLAS COOL LST R ; dbname=OFLP130 ;
password =∗∗∗∗∗∗

mysql : / / l x m r r a 3 8 0 1 ; schema=ATLAS COOL LST ; u s e r=l s t u s e r ; dbname=OFLP130 ; password
=∗∗∗∗∗∗

mysql : / / l x b 5 4 3 8 ; schema=ATLAS COOL LST ; u s e r=l s t u s e r ; dbname=OFLP130 ; password
=∗∗∗∗∗∗

s q l i t e : / /X ; schema=/p o o l / u s e r s / a t l a s / s q l i t e 1 3 0 /ALLP130 . db ; dbname=OFLP130
COOL INDET/OFLP130

• Geometry data
Geometry database contents is quite stable - it may change typically once per year. Deviations from
geometry are recorded in COOL as conditions data. Thus geometry data could safely be distributed
via !SQLite files.

◦ The logical database name is ATLASDD for all technologies.

◦ Connection information is

o r a c l e : / /ATLONR/ a t l a s d d u s e r=a t l a s d d r e a d e r password =∗∗∗∗∗∗
mysql : / / l x m r r a 3 8 0 1 /ATLASDD u s e r=a t l a s d d r e a d e r password =∗∗∗∗∗∗
mysql : / / l x b 5 4 3 5 /ATLASDD u s e r=a t l a s d d r e a d e r password =∗∗∗∗∗∗
s q l i t e f i l e : / p o o l / u s e r s / a t l a s /geomDB/ geomDB sq l i t e
s q l i t e f i l e : / p o o l /sw/ l s t 0 6 / DBRelease / 2 . 8 /geomDB/ geomDB sq l i t e

• Trigger configuration data (other than data for the algorithms)
Trigger configuration data can change run by run, although the data volume is small. They must be
distributed from a life database, via a set of caches for efficiency.

◦ The logical database name is TRIGCONF for all technologies.

◦ Connection information is (there is no SQLite representation)

o r a c l e : / /ATONR/ATLAS TRIGCONF u s e r=a t l a s t r i g c o n f r password =∗∗∗∗∗∗
mysql : / / l x m r r a 3 8 0 1 / T r i g C o n f l s t u s e r=l s t u s e r password =∗∗∗∗∗∗
mysql : / / l x b 5 4 3 5 / T r i g C o n f l s t u s e r=l s t u s e r password =∗∗∗∗∗∗

3.1.3 Location of files on /afs and local /pool

The database content is complemented by POOL files referenced from COOL, by the magnetic field map
file, and by a few setup files. Also, the SQLite databases reside in files.

• In general, the latest database release (3.0 at present) is found under

/ a f s / c e r n . ch / a t l a s / p r o j e c t / d a t a b a s e /DBREL/ p a c k a g i n g / DBRelease /3.0− n i g h t l y

• The directory structure of POOL files is similar on /afs and on the local file system under /pool which
exists per node. Data have been replicated to all nodes used in LST. The mapping from the globally
unique file identifiers (GUID) used in COOL to physical files if given in the POOL file catalogue (see
further below). The paths to POOL files referenced by OFLP130 and XPTWK130, resp., start with

/ a f s / c e r n . ch / a t l a s / p r o j e c t / d a t a b a s e /DBREL/ p a c k a g i n g / DBRelease /3.0− n i g h t l y /
poo lcond

/ p o o l / u s e r s / a t l a s / c o n d i t i o n s / poo lcond / v o l 0 /
/ p o o l / u s e r s / a t l a s / m a x i d i s k / d29 / L A r C a l o r i m e t e r / data / i n t r 1 3 0 /

11



3.1. DATABASE SUPPORT CHAPTER 3. ONLINE DATABASES USED IN THE TESTS

• The magnetic field map is found at (DATAPATH to be pre-pended with this path so that the file is
retrieved from the local file system)

/ p o o l /sw/ l s t 0 6 / A t l a s C o n d i t i o n s /2.0.3−LST−1/ I n s t a l l A r e a / s h a r e / bmagat las ∗ . data

• The POOL file catalogues are found at (DATAPATH to be pre-pended with this path so that the
files are retrieved from the local file system)

/ a f s / c e r n . ch / a t l a s / p r o j e c t / d a t a b a s e /DBREL/ p a c k a g i n g / DBRelease /3.0− n i g h t l y /
poo lcond

/ p o o l / u s e r s / a t l a s / c o n d i t i o n s / poo lcond / c a t a l o g u e

• The SQLite files used are located at the following places, which are explicitely referenced from
dblookup.xml

/ a f s / c e r n . ch / a t l a s / p r o j e c t / d a t a b a s e /DBREL/ p a c k a g i n g / DBRelease /3.0− n i g h t l y /geomDB
/ geomDB sq l i t e

/ a f s / c e r n . ch / a t l a s / p r o j e c t / d a t a b a s e /DBREL/ p a c k a g i n g / DBRelease /3.0− n i g h t l y /
s q l i t e 1 3 0 /ALLP130 . db

or / a f s / c e r n . ch / u s e r /a/ a t l c o n d / c o o l r e p / s q l i t e 1 3 0 /ALLP130 . db
/ p o o l / u s e r s / a t l a s /geomDB/ geomDB sq l i t e
/ p o o l / u s e r s / a t l a s / s q l i t e 1 3 0 /ALLP130 . db
/ p o o l /sw/ l s t 0 6 / DBRelease / 2 . 8 /geomDB/ geomDB sq l i t e

3.1.4 Data volumes

Data volumes used for HLT configuration were as follows:

• COOL database 38 MB

• Geometry database 12 MB (MySQL) or 23 MB (SQLite file) depending on DB technology

• !Trigger configuration database 1 MB

• POOL files 31 MB including the catalogues

• Magnetic field file 5 MB (packed).

Thus some 90 MB were used by each HLT node during configuration.

A wide range of data loads in COOL tables was generated and used in the tests with DBStressor, both on
Oracle and on MySQL.

In addition to that, 1.7 GB of mostly POOL data for configuring the LAr RODs via the Athena server was
made available but was not used in the tests.

A large volume (10 GB) of event data files was available locally to each ROS during running.

3.1.5 dblookup and authentication files

The dblookup.xml and authentication.xml are used by CORAL to translate logical connections to physical
database server/schema, and to retrieve user/password per physical database server/schema. The files can
be edited in place on the /afs location given. Pre-fabricated settings can be used from /pool as indicated
below. CORAL DBLOOKUP PATH and CORAL AUTH PATH to be pre-pended with the appropriate path
so that the files are retrieved as desired.
For running with a hierarchy of multiple DBProxy servers, individual dblookup.xml files are generated and
used per node.

12



CHAPTER 3. ONLINE DATABASES USED IN THE TESTS 3.1. DATABASE SUPPORT

/ a f s / c e r n . ch / u s e r /h/ hans / p u b l i c
/ p o o l / u s e r s / a t l a s / l o o k u p 4 d b p r o x y ( geometry from s q l i t e , COOL and t r i g c o n f from

dbproxy )
/ p o o l / u s e r s / a t l a s / l o o k u p 4 s q l i t e ( geometry and COOL from s q l i t e , t r i g c o n f from

dbproxy )
/ p o o l /sw/ l s t 0 6 / DBRelease / 2 . 8 / XMLConfig/ ( f o r t he s t a n d a r d s e t d e l i v e r e d w i t h

th e r e l e a s e )

3.1.6 Tools used to populate the databases

• Tools for COOL databases
There is a variety of tools available from the DB project. The tools allow copying of COOL databases
between the same or different database technologies (Oracle, MySQL, !SQLite). Also the conversion
of older to new COOL data formats is supported. Other tools allow browsing of COOL databases.

◦ Setting up for usage of the tools

s o u r c e ˜/cmthome/ s e t u p . sh −tag=A t l a s O f f l i n e , 1 2 . 0 . 3 , gcc323
s o u r c e / a f s / c e r n . ch / a t l a s / s o f t w a r e / b u i l d s / A t l a s C o n d i t i o n s / 2 . 0 . 3 / Database /

C o o l C o n v U t i l i t i e s /cmt/ s e t u p . sh

• ◦ The following commands have been used to get COOL data for the LST

AtlCoolCopy . exe ” s q l i t e : / /X ; schema=/ a f s / c e r n . ch / u s e r /a/ a t l c o n d / c o o l r e p / s q l i t e 1 3 0
/OFLP130 . db ; dbname=OFLP130” ” o r a c l e : / /ATONR; schema=ATLAS COOL LST ; u s e r=
ATLAS COOL LST ; dbname=OFLP130 ; password =∗∗∗∗∗∗” −c r e a t e − f o r c e r e c r e a t e

At lCoo lCopy . exe ” s q l i t e : / /X ; schema=/ a f s / c e r n . ch / u s e r /a/ a t l c o n d / c o o l r e p / s q l i t e 1 3 0
/OFLP130 . db ; dbname=OFLP130” ” mysql : / / l x m r r a 3 8 0 1 ; schema=ATLAS COOL LST ; u s e r=
l s t u s e r ; dbname=OFLP130 ; password =∗∗∗∗∗∗” −c r e a t e − f o r c e r e c r e a t e

cp / a f s / c e r n . ch / u s e r /a/ a t l c o n d / c o o l r e p / s q l i t e 1 3 0 /ALLP130 . db / p o o l / u s e r s / a t l a s /
s q l i t e 1 3 0 /ALLP130 . db

At lCoo lCopy . exe ” o r a c l e : / / INTR ; schema=ATLAS COOL LAR ; dbname=XPTWK130” ” mysql : / /
l x m r r a 3 8 0 1 ; schema=ATLAS COOL LST ; dbname=XPTWK130 ; u s e r=l s t u s e r ; password
=∗∗∗∗∗∗” −c r e a t e − f o r c e r e c r e a t e

At lCoo lCopy . exe ” o r a c l e : / / INTR ; schema=ATLAS COOL LAR ; dbname=XPTWK130” ” o r a c l e : / /
ATONR; schema=ATLAS COOL LST ; dbname=XPTWK130 ; u s e r=ATLAS COOL LST ; password
=∗∗∗∗∗∗” −c r e a t e − f o r c e r e c r e a t e

At lCoo lCopy . exe ” o r a c l e : / /ATONR; schema=ATLAS COOL LST ; dbname=LAROTEST” ” mysql : / /
l x m r r a 3 8 0 1 ; schema=ATLAS COOL LST ; dbname=LAROTEST ; u s e r=l s t u s e r ; password
=∗∗∗∗∗∗” −c r e a t e − f o r c e r e c r e a t e

(LAROTEST needed c o n v e r s i o n from COOL 1 . 2 to COOL 1 . 3 format b e f o r e , which was
done on ATONR)

• Tools for copying between MySQL databases
The mysqldump utility can be used to generate a dump of one or more databases in form of an SQL
script. This can then be uploaded to a MySQL server using the mysql source command. For the
!SQLite geometry, used

cp / a f s / c e r n . ch / a t l a s / p r o j e c t / d a t a b a s e /DBREL/ p a c k a g i n g / DBRelease /3.0− n i g h t l y /
geomDB/ geomDB sq l i t e / p o o l / u s e r s / a t l a s /geomDB/ geomDB sq l i t e

• Other mechanisms used

13



3.1. DATABASE SUPPORT CHAPTER 3. ONLINE DATABASES USED IN THE TESTS

◦ The Trigger Configuration group has a combination of shell and sql scripts to populate Oracle
or MySQL databases with the jobOptions and TriggerMenu data needed for LVL1 and HLT
configuration. These scripts have been used to populate ATONR and lxmrra3801.
◦ The DB Release makes available COOL and geometry databases for Oracle, MySQL, and !SQLite

in form of files. These can be uploaded to the database servers, using Oracle imp and MySQL
source commands, resp.

3.1.7 Things to remember...
• The DBProxy servers should be flushed by run control every time before HLT needs to reconfigure,

e.g. at each stop-run.
◦ Reason: IoV based COOL data will often have an IoV of ”this-run-number (r) to infinity”. The

IoV is likely to be closed by making it ”r to r”. Then for new run r+1, the cached IoV ”r to
infinity” is still valid for run r+1, while it isn’t in fact according to the DB.
◦ This flushing does not introduce a performace penalty. DbProxy is mainly meant as a fanout

mechanism to the many HLT nodes and not as a longer-term memory.
• Assuming that HLT algorithms won’t perform a complete re-configuration at each start-of-run, they

should be told about individual parameter changes in order to economise on startup times. Startup
times have been observed to be O(min) when algorithms are started from scratch which is sizeable
if a stop-start transition happens during beams time.

Problems solved and unsolved

• (SOLVED during LST) The CORAL release used gets confused with two connections which both
go to MySQL and/or DBProxy, e.g. for geometry and COOL. All other combinations of database
technology work. This happened for pure offline running, e.g. with InDetRecExample, and in LVL2
running as well.
◦ Reason/solution: The problem comes when an Athena job has multiple CORAL clients, each

loading the CORAL libraries into a context using the SEAL plugin manager. If they are loaded
into different contexts, and two clients both use MySQL, the second one does not initialise
properly. Modifications have been made to the connection code for RDB Access and Trigger
Configuration in order to use existing context provided by POOL (packages RDBAccessSvc and
TrigConfStorage).
◦ Note that changes were also necessary in package TrigConfigSvc. These need to be made in

sync with the changes to TrigConfStorage.
◦ The error message was:

RDBAccessSvc::connect() ERROR Exception caught: Type converter not loaded (CORAL :
”ITypeConverter::MySQLAccess::SessionProperties::typeConverter” from ”MySQLAccess”)
◦ As the geometry is very stable we intend to read it from !SQLite also for production datataking.

Locking problems with SQLite files accessed via nfs may prevent this, in which case DBProxy
would provide the service.

• (SOLVED during LST) CORAL cannot read the geometry from MySQL server lxmrra3801 while this
works with atlmysql03. Happened offline and also in LVL2/EF tests.
◦ Reason/solution: some primary keys had MySQL data type decimal(22,0), other fields had

float(11,10). CORAL did not accept this in conjunction with MySQL 5. Schema on lxm-
rra3801/04 changed to int(22) and float, resp.
◦ The error message was:

DBRecordset::getData ERROR Schema Exception : Could not identify output type for ”ELE-
MENTS DATA.ELEMENTS DATA ID” ( CORAL : ”IQuery::execute” from ”CORAL/Relation-
alPlugins/mysql” )

• (SOLVED in Jan 2007) Geometry and COOL cannot both be read via DBProxy.

14

https://twiki.cern.ch/twiki/bin/view/Atlas//InDetRecExample


CHAPTER 3. ONLINE DATABASES USED IN THE TESTS 3.2. ATLAS DBPROXY

◦ Reason/solution: MySQL accesses were not completely ”atomic” in the CORAL version used,
i.e., the database name needs always to be included within the queries.
◦ IT has already provided a patched CORAL MySQL shared library which can be used now. Will

be in release CORAL 1.7.
• athenaMT gets confused with DBProxy data after a ”show tables from ATLAS COOL LST” has

been issued from the client ”mysql –user=lst user –host= ATLAS COOL LST”: it cannot connect
any more. Does not happen offline in InDetRecExample.

Complete:
Responsible: Hans Von Der Schmitt
Author: Hans Von Der Schmitt 16 Dec 2006
Contributors: Hans Von Der Schmitt
Last significantly modified by: Hans Von Der Schmitt 21 Dec 2006
Not yet reviewed

3.2 ATLAS DBProxy

3.2.1 Introduction

The DaqDbProxy is a mechanism through which the Atlas HLT can access configuration information from
the database. Each proxy is able to cache information from the database in order to minimize the number
of times a connection to the database is required.

3.2.2 Proxy Trees

The proxy acts as a client on the database side and as a server on the HLT side:

DATABASE
/ | \

/ | \
/ | \

dbproxy dbproxy dbproxy . . .
/ | \ / | \ / | \

/ | \ / | \ / | \
HLT PROCESSES

It is possible to connect a proxy to another proxy:

DATABASE
|
|

dbproxy
/ | \

/ | \
/ | \

dbproxy dbproxy dbproxy . . .
/ | \ / | \ / | \

/ | \ / | \ / | \
HLT PROCESSES

The hierarchical proxy structure limits the number of HLT processes with which each proxy must commu-
nicate. Right now the proxy can communicate using the MySQL protocol only.

15

https://twiki.cern.ch/twiki/bin/view/Atlas//MySQL


3.2. ATLAS DBPROXY CHAPTER 3. ONLINE DATABASES USED IN THE TESTS

3.2.3 Usage

The usage of the dbproxy application is:

daqdbproxy −h <d b s e r v e r a d d r e s s >
o p t i o n s : −x <d b p r o x y p o r t > [ d e f a u l t : 3306 ]

−c <d b p r o x y c t r l p o r t > [ d e f a u l t : 3307 ]
−d <d b s e r v e r p o r t > [ d e f a u l t : 3306 ]
−z <p o o l s i z e b y t e s > [ d e f a u l t : 128MB]
−r <p a r t i t i o n > [ d e f a u l t : none ]

For example:

daqdbproxy -h atlmysql03.cern.ch -r testPartition

The required argument is on which the proxy listens in order to run multiple proxies on the same machine.
The options may be used to specify a different port for the database when the database is not listening on
the standard MySQL port.

The option allows to increase the total size of memory, in bytes, used by the cache. If the proxy needs more
memory at some point during its lifetime than what is specified by this option, it will raise an exception.

The option specifies the port number which can be used to send messages to the proxy through the
daqdbproxycontrol application. This mechanism is not used for normal operations since Run Control
manages the proxy via IPC using the partition name specified by . The IPC application name is ’daqdbproxy’.

3.2.4 Recognized Commands

The following commands are recognized:

f l u s h ( ) f l u s h e s th e cache
dump ( ) dumps t he cache
c o n n e c t ( ) c o n n e c t s th e p r o x y to th e d a t a b a s e
d i s c o n n e c t ( ) d i s c o n n e c t s th e p r o x y from the d a t a b a s e

3.2.5 Example Implementation in a Partition

Below is an example of the piece of xml that needs to be in the partition file for DbProxy:

<o b j c l a s s =” A p p l i c a t i o n ” i d =”DaqDbProxy−top”>
<a t t r name=”Name” t y p e=” s t r i n g ”>”DaqDbProxy−top”</ a t t r >
<a t t r name=”Parameter s ” t y p e=” s t r i n g ”>” −h pc−p r e s e r i e s −efp −31. c e r n . ch ”</ a t t r >
<a t t r name=”R e s t a r t P a r a m e t e r s ” t y p e=” s t r i n g ”>””</ a t t r >
<a t t r name=”C o n t r o l l e d B y O n l i n e ” t y p e=”b o o l ”>1</ a t t r >
<a t t r name=” I f D i e s ” t y p e=”enum”>” R e s t a r t ”</ a t t r >
<a t t r name=” I f F a i l e d ” t y p e=”enum”>” R e s t a r t ”</ a t t r >
<a t t r name=”S t a r t A t ” t y p e=”enum”>”Boot”</ a t t r >
<a t t r name=”StopAt ” t y p e=”enum”>”Shutdown”</ a t t r >
<a t t r name=”I n i t T i m e o u t ” t y p e=”u32”>10</ a t t r >
<a t t r name=” S t a r t I n ” t y p e=” s t r i n g ”>””</ a t t r >
<a t t r name=”I n p u t D e v i c e ” t y p e=” s t r i n g ”>””</ a t t r >
<a t t r name=”Logg ing ” t y p e=”b o o l ”>1</ a t t r >
< r e l name=” I n i t i a l i z a t i o n D e p e n d s F r o m ” num=”0”></ r e l >

16

https://twiki.cern.ch/twiki/bin/view/Atlas//MySQL
https://twiki.cern.ch/twiki/bin/view/Atlas//DbProxy


CHAPTER 3. ONLINE DATABASES USED IN THE TESTS 3.2. ATLAS DBPROXY

< r e l name=”ShutdownDependsFrom ” num=”0”></ r e l >
< r e l name=”Program”>” B i n a r y ” ” d a q d b p r o x y w r a p p e r ”</ r e l >
< r e l name=” E x p l i c i t T a g ”>”” ””</ r e l >
< r e l name=”Uses ” num=”0”></ r e l >
< r e l name=”RunsOn”>”Computer ” ” pcuwtr6 . c e r n . ch”</ r e l >

</obj>

The L2 processes and EFs need to have dependencies set (InitializationDependsFrom) so that they are
started after the proxies to which they connect.

The connection information currently is stored in two files, authorization.xml and dblookup.xml. The
authorization files stores username and password info for each of the databases that will be accessed, and
dblookup allows the user to select the database techonology to use (Mysql, Oracle, sqlite files, DbProxy).
The location of these files is included in the partition as environmental variables.

3.2.6 Timing Studies

The DbProxy log file currently records information about each communication from-to clients and the
database. The files can be read to learn about configuration times, bytes delivered by the proxy, and
whether or not queries were answered by the DbProxy cache. Below is an example of analysis on a proxy
log file taken during the March 07 Technical Run in which the Combined Trigger Slice (including electrons,
photons, muons, jets, and taus) was configured:

T o t a l number o f nodes : 42

Summary o f Commands :
COM INIT DB 1142
COM QUERY 9218
COM FIELD LIST 895
COM PING 43782

Host : F i r s t Query ( s ) L a s t Query ( s ) D e l t a Bytes
Time ( ns ) # o f Q u e r i e s

0 xa9523f7 : 1174600091.4033 1174600157.2743 65.8710000515 344468
18446744069639521320 214

0 xa9523fb : 1174600091.4443 1174600157.2744 65.8301000595 345918 199791000
216

0 xa9523f6 : 1174600091.4828 1174600157.2732 65.7904000282 344468 198904000
214

0 xa9 523fa : 1174600091.5273 1174600157.2738 65.7465000153 344446 199409000
216

0 xa9523f9 : 1174600091.5277 1174600157.2739 65.7462000847 344446 200720000
216

0 xa9523f8 : 1174600091.5428 1174600157.2742 65.731400013 344468 197487000
214

0 xa9523f4 : 1174600091.5583 1174600157.2737 65.7153999805 344468 197160000
214

0 xa9523fd : 1174600091.5656 1174600157.2742 65.7086000443 345193 225936000
215

0 x a 9 5 2 3 f c : 1174600091.6060 1174600157.2734 65.6674001217 345918 198911000
216

0 xa9523f5 : 1174600091.6612 1174600157.2741 65.6129000187 344468 196957000
214

17

https://twiki.cern.ch/twiki/bin/view/Atlas//InitializationDependsFrom
https://twiki.cern.ch/twiki/bin/view/Atlas//DbProxy
https://twiki.cern.ch/twiki/bin/view/Atlas//DbProxy
https://twiki.cern.ch/twiki/bin/view/Atlas//DbProxy


3.2. ATLAS DBPROXY CHAPTER 3. ONLINE DATABASES USED IN THE TESTS

0 xa9523f3 : 1174600091.8707 1174600157.2745 65.4038000107 172234 102142000
107

0 x a 9 5 2 3 f e : 1174600091.8896 1174600157.2747 65.3850998878 345193 200627000
215

0 xa9521ee : 1174600092.2429 1174600157.2640 65.0211000443 370528 241957000
231

0 xa9521f1 : 1174600092.2996 1174600157.2715 64.9719002247 358561 211276000
227

0 xa9521ec : 1174600092.3041 1174600157.2677 64.9635999203 360066 210782000
228

0 xa9521e0 : 1174600092.3135 1174600157.2694 64.9558999538 376536 219881000
232

0 xa9521da : 1174600092.3328 1174600157.2687 64.9358999729 360130 209446000
229

0 xa9521d9 : 1174600092.3376 1174600157.2688 64.9312000275 360130 210754000
229

0 xa9521d7 : 1174600092.3424 1174600157.2666 64.9241998196 361602 210294000
229

0 xa9521e1 : 1174600092.3480 1174600157.2692 64.921200037 360260 209043000
230

0 xa9521e7 : 1174600092.3533 1174600157.2748 64.9214999676 359947 207352000
226

0 x a 9 5 2 1 e f : 1174600092.3583 1174600157.2700 64.9117000103 368409 211742000
231

0 xa9521e3 : 1174600092.3635 1174600157.2750 64.9114999771 360442 209389000
227

0 xa9521e6 : 1174600092.3804 1174600157.2671 64.8867001534 359876 208440000
225

0 xa9521df : 1174600092.3908 1174600157.2703 64.8794999123 368398 225606000
231

0 xa9521e8 : 1174600092.3959 1174600157.2674 64.8715000153 360600 208805000
226

0 xa9521e9 : 1174600092.4069 1174600157.2750 64.8681001663 363074 208956000
230

0 xa9521ed : 1174600092.4183 1174600157.2676 64.8493001461 360066 208708000
228

0 xa9521eb : 1174600092.4545 1174600157.2707 64.8162000179 360130
18446744069622298320 229

0 xa9521ea : 1174600092.4604 1174600157.2711 64.8106999397 358517 206903000
227

0 xa9521de : 1174600092.4663 1174600157.2681 64.8018000126 359151 207946000
224

0 xa9521e4 : 1174600092.4719 1174600157.2713 64.7994000912 359892 206902000
226

0 xa9521db : 1174600092.4775 1174600157.2701 64.7926001549 360344 210854000
226

0 xa9521d8 : 1174600092.4893 1174600157.2708 64.7815001011 360066 206523000
228

0 xa9521e5 : 1174600092.5011 1174600157.2686 64.7674999237 360066 209549000
228

0 xa9521d6 : 1174600092.5614 1174600157.2697 64.7083001137 361133 207758000
228

0 xa9521f0 : 1174600092.5736 1174600157.2633 64.6896998882 363204 209407000
230

0 xa9521e2 : 1174600092.5996 1174600157.2696 64.6699998379 360260 208917000

18



CHAPTER 3. ONLINE DATABASES USED IN THE TESTS 3.2. ATLAS DBPROXY

230
0 xa9521dd : 1174600092.6063 1174600157.2635 64.6571998596 360622 208064000

224
0 xa9521f2 : 1174600092.9706 1174600157.2719 64.3013000488 356807 205669000

224
0 xa9521d5 : 1174600093.4804 1174600157.2721 63.7916998863 221803 146883000

138
0 xa9521dc : 1174600093.5185 1174600157.2683 63.7497999668 362072 211851000

226

The two unusually long configure times are the result of an overflow to be fixed in the printing of the log
file. The python script that creates the table above, along with other information, by reading the DbProxy
output file is attached to this page.

3.2.7 Comments

The proxy is started through the process manager mechanism by Run Control at boot time and it has the
same lifetime as the partition.

This package uses ERS for reporting issues and messages. The proxy is currently in the online CVS
Repository in the area DAQ/online/DaqDbProxy, but the location may change in the near future.

* read proxyout.py.txt: python script to parse DbProxy output file

Complete:
Responsible:
Author: Sarah Demers 05 Sep 2006
Contributors: Sarah Demers
Last significantly modified by: Sarah Demers 05 Sep 2006
Not yet reviewed

19

https://twiki.cern.ch/twiki/bin/view/Atlas//DbProxy
https://twiki.cern.ch/twiki/bin/view/Atlas///afs/cern.ch/project/twiki/production/pub/Atlas/AtlasDBProxy/read_proxyout.py.txt
https://twiki.cern.ch/twiki/bin/view/Atlas//DbProxy


Chapter 4

Configuration of the High Level
Trigger through the TriggerDB

4.1 Configuration of the High Level Trigger through the Trigger Config-
uration Database (the TriggerDB)

4.2 Introduction

The configuration of the ATLAS High Level Trigger (HLT) is complex. The large and diverse ATLAS
physics program requires a flexible and scalable approach to define and maintain a large variety of trigger
signatures in a straight forward and robust manner. Bookkeeping should be simplified and aided, while at
the same time the history of the trigger during the lifetime of ATLAS must be recorded. For these reasons
a relational database was designed that can store all trigger configurations. A mechanism was put in place
that can retrieve a configuration from the database and configure the Level 1 trigger hardware and HLT
software for data taking. This database (the TriggerDB) and the software to configure the trigger are
briefly described in this chapter, links for more detailed information are given.

The second part of this chapter describes the objectives and the results of the Large Scale Test 2006 with
respect to the trigger configuration.

4.3 Configuration Technology

4.3.1 The Trigger Configuration Database

The HLT part of the trigger configuration database is designed to reflect the HLT concept of trigger chains
(describing a complete physics trigger) which in turn consist of trigger elements (which are the logical
equivalents of the reconstruction and selction algorithms). This information is used by the HLT steering.
A separate set of tables holds the option values of all algorithms, services, and tools that make up an HLT
job. For more information one can find a complete description of the database layout (including the Level 1
part). A graphic of the TriggerDB schema is also available as a pdf file. HLT configurations are extracted
from HLT offline jobs that are prepared and tested for the purpose of online running; the information is
then loaded into the TriggerDB. This process is supervized by the Online Integration Group.

4.3.2 Configuring the Level 2 and EventFilterTrigger Applications

Two applications are dedicated to run the Level 2 and the High Level trigger software, L2PSC and . Both use
internally the GaudiSvc/ApplicationMgr class, which in ATLAS handles the initialization and configuration

20

https://twiki.cern.ch/twiki/bin/view/Atlas//TrigConfDocu
https://twiki.cern.ch/twiki/bin/view/Atlas//TrigConfDocu
https://twiki.cern.ch/twiki/bin/view/Atlas//HltSteering
https://twiki.cern.ch/twiki/bin/view/Atlas//TrigConfTriggerDB
https://twiki.cern.ch/twiki/bin/view/Atlas///afs/cern.ch/project/twiki/production/pub/%WEB%/TrigConfTriggerDB/schema_graphics.pdf
https://twiki.cern.ch/twiki/bin/view/Atlas//GaudiSvc


CHAPTER 4. CONFIGURATION OF THE HIGH LEVEL TRIGGER THROUGH THE TRIGGERDB4.4. LARGE SCALE TEST OBJECTIVES AND RESULTS

of all needed trigger algorithms and services in the proper order. For this purpose the ApplicationMgr holds
ordered lists of all required dll’s, all top-algorithms, and all services. These lists are stored in the TriggerDB
as properties of the ApplicationMgr, after their retrieval from the TriggerDB the ApplicationMgr is able to
initialize and configure all algorithms and services. The initialization and configuration of the top-algorithms
and services means that they in turn retrieve their properties from the database and subsequently perform
the necessary actions.

Special among the services and top-algorithms are the HLTMenuService and the HLTSteering algorithm.
During initialization the HLTMenuService loads the trigger menu information (trigger chains and elements
and their binding to the algorithms) from the TriggerDB. The HTLSteering algorithm, which controls the
execution of the trigger algorithms, uses this information during the configuration phase to initialize and
configure the trigger algorithms.

4.4 Large Scale Test Objectives and Results

4.4.1 Goals of the trigger configuration group during the Large Scale Tests 2006

The test program consisted of the following steps. The TriggerDB will be used to configure and run

1 a single Level 2 trigger node with direct access to the TriggerDB,

2 a Level 2 and an EventFilter node together with direct access to the TriggerDB,

3 a number (∼10) of Level 2 and EventFilter nodes with direct access to the TriggerDB,

4 and a number (40) of Level 2 and EventFilter nodes with access to the TriggerDB via the DBProxy.

4.4.2 Preparation of the TriggerDB and OKS

For the Large Scale Tests 2006 a designated software release (12.0.3-LST-1) was used. In this release four
trigger configurations were prepared and loaded into the database. These were a configuration of a single
egamma slice, a single muon slice, a single jet slice, and a configuration that combined these three slices.

To upload a trigger setup into the database the following steps were done:

1 The setups were tested within the !athenaMT and the !athenaPT framework, and a log of the job
options of all configured algorithms and services was produced (using the athena THistSvc)

2 This job option log and the HLT trigger menu (all in form of xml files) are loaded into a MySQL
database on the MySQL server that was running on the lxfarm (lxb5438.cern.ch). The version of the
MySQL server and client software must be at least 5.0, since the trigger configuration upload scripts
use stored procedures. After the upload of the 4 trigger configuration, 4 configuration masterkeys
were produced, which in conjunction with the MySQL host and account names are all that is needed
to specify a complete trigger configuration.

OKS specification

The following modifications were necessary to inform the trigger applications to configure from the database
and which configuration key to use. In the OKS obj L2PUConfiguration and PTConfiguration the
attributes physicsAnalysisLibrary and physicsAnalysisConfiguration need to be changed. Here
that is shown for the EF nodes configuration

<o b j c l a s s =”P T C o n f i g u r a t i o n ” i d =”PTConfig”>
<a t t r name=” p h y s i c s A n a l y s i s L i b r a r y ” t y p e=” s t r i n g ” num=”4”>”TrigEFPSC” ”

T r i g E F S e r v i c e s ” ” T r i g S e r v i c e s ” ” T r i g C o n f i g S v c ” </ a t t r >
<a t t r name=” p h y s i c s A n a l y s i s C o n f i g u r a t i o n ” t y p e=” s t r i n g ”>

21

https://twiki.cern.ch/twiki/bin/view/Atlas//ApplicationMgr
https://twiki.cern.ch/twiki/bin/view/Atlas//TriggerDB
https://twiki.cern.ch/twiki/bin/view/Atlas//ApplicationMgr
https://twiki.cern.ch/twiki/bin/view/Atlas//TriggerDB
https://twiki.cern.ch/twiki/bin/view/Atlas//ApplicationMgr
https://twiki.cern.ch/twiki/bin/view/Atlas//EventFilter
https://twiki.cern.ch/twiki/bin/view/Atlas//EventFilter
https://twiki.cern.ch/twiki/bin/view/Atlas//THistSvc
https://twiki.cern.ch/twiki/bin/view/Atlas//MySQL


4.4. LARGE SCALE TEST OBJECTIVES AND RESULTSCHAPTER 4. CONFIGURATION OF THE HIGH LEVEL TRIGGER THROUGH THE TRIGGERDB

”POSTCOMMAND=&apos ;& apos ; ; JOBOPTIONSTYPE=&apos ;\& apos ;DB\&apos ;& apos ; ;
WORKERTHREADS=&apos ;0& apos ; ; L

OGLEVEL=&apos ;ERROR&apos ; ; TRACEPATTERN=&apos ;& apos ; ; PYTHONSETUPFILE=&apos ;
TrigEFPSC/ TrigEFPSCPythonSetup . py&apos ; ; SHOWINCLUDE=&apos ;0& apos ; ;
JOBOPTIONSPATH=&a

pos ;\& apos ; DBType=MySQL : DBServer=l x b 5 4 3 8 . c e r n . ch : DBUser=l s t u s e r : DBPasswd=l s t 0 6 :
DBName=T r i g C o n f l s t : I n s t a n c e=EF : DBKey=1\&apos ;& apos ; ; DLLNAME=&apos ; [& apos ; T r i

gEFPSC&apos ; , &apos ; T r i g E F S e r v i c e s&apos ; ,
&apos ; T r i g S e r v i c e s&apos ; ]& apos ; ;PRECOMMAND=&apos ;\& apos ; doEFOnl ine=True\&apos ;&

apos ; ; EVENTSELECTOR=&apos ;NONE&apos ;
;FACTORYNAME=&apos ;& apos ; ; JOBOPTIONSSVCTYPE=&apos ;\& apos ; T r i gC o n f : :

HLTJobOptionsSvc\&apos ;& apos ; ; MESSAGESVCTYPE=&apos ; MessageSvc&apos ; ”
</ a t t r >

</obj>

Important are the additional library ”TrigConfigSvc” that needs to be loaded, and the three modifications
to the physicsAnalysisConfiguration string:
• JOBOPTIONSTYPE=apos;&apos;DB&apos;apos;
• JOBOPTIONSSVCTYPE=apos;&apos;TrigConf::HLTJobOptionsSvc&apos;apos;
• JOBOPTIONSPATH=apos;&apos;DBType=MySQL:DBServer=lxb5438.cern.ch:DBUser=lst user:DBPasswd=lst06:DBName=TrigConf lst:Instance=EF:DBKey=1&apos;apos;

4.4.3 Test Results

For the trigger configuration only functionality tests were performed, no timing measurements were ex-
ecuted. All four goals were achieved. The TriggerDB was successfully used to configure on a partition
that consisted of 10 machines, each running 2 L2PUs and 18 machines, each running 2 PTs. The caching
mechanism of the DBProxy was used to retrieve the configuration information.

4.4.4 Encountered Problems

During the tests two problems were encountered:
• MySQL Database multi-session access problem
• Job option configuration order defined by their order in the TriggerDB, but should be defined by their

order in the C++ classes. This leads to problems when configuring the ApplicationMgr.

Complete:
Responsible:
Author: Joerg Stelzer 23 Jan 2007
Contributors: Joerg Stelzer
Last significantly modified by: Joerg Stelzer 23 Jan 2007
Not yet reviewed

22



Chapter 5

Tests with DBStressor

5.1 Tests of ROD configuration from Oracle

5.1.1 Introduction

5.1.2 Main heading

Complete:
Responsible:
Author: Hans Von Der Schmitt 20 Dec 2006
Contributors: Hans Von Der Schmitt
Last significantly modified by: Hans Von Der Schmitt 20 Dec 2006
Not yet reviewed

5.2 DBProxy tests with DBStressor

5.2.1 Introduction

The DBStressor allows a user to stress the database by employing a large number of clients to simultaneously
request information from the database. While the Stressor was designed in order to emulate the detectors
accessing the database it can be used to test the performance of the DbProxy in under extreme conditions.
Our hope was to test many different configurations of Stressors and Proxies, but the limited amount of time
available for the LST, combined with the large amount of time it took (on the order of 20 - 40 minutes)
to get a large (∼ 500 node) partition to the point of the configure transition, did not allow for extensive
testing. We present the results of our large partition test below.

5.2.2 Test Setup and Limitations

We tested a 600 node partition with a DBStressor Controller running on each node with the nodes dis-
tributed in segments of 25 nodes each. At the configure transition each Controller requested 10,000 lines
from the Mysql Database LST06 100s 10K. Each line in the database consisted of 100 strings. The to-
tal size of the data requested per controller was therefore about 1.3 MBytes. The time required for the
successful acquistion of the data was compared between the two following situations:

1) All Controllers requesting information directly from the Mysql server, lxmrra3801

2) All Controllers requesting information via one DbProxy, with the DbProxy connected to the Mysql server
lxmrra3801

23

https://twiki.cern.ch/twiki/bin/view/Atlas//DbProxy
https://twiki.cern.ch/twiki/bin/view/Atlas//DbProxy
https://twiki.cern.ch/twiki/bin/view/Atlas//DbProxy


5.2. DBPROXY TESTS WITH DBSTRESSOR CHAPTER 5. TESTS WITH DBSTRESSOR

This test setup is unrealistic in that the DbProxy is intended to handle a much smaller number of clients in
order to take the best advantage of its database caching. It is estimated that the final running conditions
will require hundreds of proxies, with each proxy handling on the order of 10 to 30 clients. There was not
sufficient time to allow for a test with a large number of proxies, which would have been a more relevant
configuration.

5.2.3 Results and Conclusions

In both cases there was on the order of 1-2 nodes per segment that did not reach the configure transition
and so were not included in the measurement. In case 1, going directly to Mysql, the fastest node configured
in 172 seconds and the slowest node configured in 251 seconds. In case 2, going via the DbProxy, the
fastest node configured in 15 seconds and the slowest node configured in excess of 500 seconds. The spread
of configuration times is shown below.

* dbstressortest.gif:

Complete:
Responsible:
Author: Doris Burckhart 18 Dec 2006
Contributors: Doris Burckhart, Sarah Demers
Last significantly modified by: Sarah Demers 11 Jan 2007
Not yet reviewed

24

https://twiki.cern.ch/twiki/bin/view/Atlas//DbProxy
https://twiki.cern.ch/twiki/bin/view/Atlas//DbProxy


Chapter 6

Level 2 Tests

6.1 Trigger Level 2 tests

6.1.1 Introduction

6.1.2 Basic ”stop watch” measurements

For the Configure transaction, a few time intervals were measured with a stop watch with a precision
of ∼sec. This was done during the measurements taken with more detail using OPMON. The database
connections used were:

• Geometry always from SQLite

• POOL and B-field files always local to each node

• Trigger configuration (1) from job options, (2) from the TriggerDB in MySQL

• COOL data (1) via DBProxy, (2) via DBProxy pre-loaded with all necessary data, (3) from the
MySQL server, (4) from SQLite files local to each node, (5) from the Oracle server.

The time interval measured between pushing the Configure button and the fastest L2PU to be ready
(column first in the table below), and between pushing the button and the majority to be ready (column
bulk) was taken. In addition is shown the time for L2PU number 1 in subfarm 1, named L2PU-1, as
recorded in the log file (column 1-1). The time for the last L2PU was not measured by stopwatch although
it determines the overall configuration time. This is shown in the OPMON distributions further below.

All times are in seconds. ”nm” denotes that the value was not measured.

COOL data first bulk 1-1
Trigger configuration from job options
DBProxy 72 90 62

DBProxy preloaded 71 85 61

MySQL 70 95 63

SQLite 71 85 60

Oracle 74 nm 65

Trigger configuration from the TriggerDB
DBProxy preloaded 77 91 58

The fastest time was always observed for the same L2PU which may be due to its CPU speed as well as
to the network structure. The bulk of the L2PUs all got ready within a few seconds from each other.

25



6.1. TRIGGER LEVEL 2 TESTS CHAPTER 6. LEVEL 2 TESTS

6.1.3 Measurements of DbProxy connect/disconnect

During the configuration exercises, the activity of the !DBProxy servers was written to log files. Access
timings were then extracted from these files. The log files are taken from one of the DbProxy servers, serving
20 nodes, i.e. 40 L2PUs. During configure, each L2PU makes six DB connects and six DB disconnects,
plus several queries inbetween. The DbProxy servers were set up to log the connects and disconnects, but
not the queries (see figures below).

• Upper diagram: absolute time of the 1st connect and the last disconnect, one entry per node. All
database accesses are contained in an interval of 17 sec. This is the interval from the first access to
!DBProxy to the last one, for the set of all L2PUs. It is an upper bound of the time spent with DB
accesses because the detailed activity of the DB server in terms of queries going on was not recorded.
The server is likely to be idle for part of this time. The absolute time if DB connects (blue) and
disconnects (red) is plotted.

• Lower diagram: time difference per node of last disconnect - 1st connect, one entry per node. This
difference is 9 sec at maximum.

26



CHAPTER 6. LEVEL 2 TESTS 6.1. TRIGGER LEVEL 2 TESTS

The data indicate that the majority of the total configuration time (75 to 90 sec) is spent in setup tasks
other than DB accesses. Detailed studies of the remaining time (60 to 75 sec) spent outside of DB access
(∼15 sec) are needed to significantly reduce the HLT configuration time.

Complete:
Responsible: Haimo Zobernig
Author: Doris Burckhart 18 Dec 2006
Contributors: Doris Burckhart, Haimo Zobernig
Last significantly modified by: Haimo Zobernig 19 Dec 2006
Not yet reviewed

27



Chapter 7

Event Filter Tests

7.1 Event Filter tests

(AtlasTDAQLargeScaleTests2006EventFilter

7.2 Introduction

The EventFilter system, as a part of the HighLevelTrigger and TDAQ total system, was tested to a certain
extent in the LST 2005 in the WestGrid and the LST 2005 at CERN. The LSTs 2005 had very general
goals and a general program. TDAQ and EventFilter without PESA algorithms showed good scalability
up to order of ∼ 1000 hosts. The general/detailed TDAQ tests were therefore not among the goals of
the LST 2006. The main interest was to validate new versions of TDAQ HLT software and to study the
Database access.

7.3 Main goals for EventFilter@ LST06

Given the features and status of the EventFilter system and its functionality overlap with the Level-2
system it was considered optimal to avoid repetition of tests which could (and were decided to) be done
with EventBuilding + Level-2. The focus of the EventFilter tests was therefore on Algorithms-to-CondDB
performance with the DBProxy, as well as on general validation of the EventFilter with algorithms on the
Large Scale.

The following goals were therefore chosen for the EventFilter @ LST06:
• run the largest possible EF partition and prove that it can work reasonably well;
• run the EF partition with PESA algorithms using the DBProxy to access the CondDB and verify

operations of DBProxy as a part of aTDAQ+EF partition;
• study the performance of the (TDAQ+)EF+algorithms system in detail (config times)

◦ at various scales (total size of TDAQ/EF partition);
◦ with various SubFarm sizes and numbers of PTs / EF node;
◦ comparing performance using CondDB with sqlite files, directly accessing the database, and

using DBProxies.

In particular, to optimize working time, it was decided to first focus on EF-standalone partitions (without
EventBuilding and Level-2), preloading event data in SFIemulators. The combination with Level-2 was also
desirable, but there was not enough time (manpower) to achieve this.

Also, the tests were all based on only the EGamma PESA algorithm, which was fully integrated and prepared
for the LST 2006. It was an attractive idea to include other algorithms together with EGamma, in order

28

https://twiki.cern.ch/twiki/bin/view/Atlas//EventFilter
https://twiki.cern.ch/twiki/bin/view/Atlas//HighLevelTrigger
https://twiki.cern.ch/twiki/bin/view/Atlas//WestGrid
https://twiki.cern.ch/twiki/bin/view/Atlas//AtlasTDAQLargeScaleTests2005
https://twiki.cern.ch/twiki/bin/view/Atlas//EventFilter
https://twiki.cern.ch/twiki/bin/view/Atlas//EventFilter
https://twiki.cern.ch/twiki/bin/view/Atlas//EventBuilding
https://twiki.cern.ch/twiki/bin/view/Atlas//EventFilter
https://twiki.cern.ch/twiki/bin/view/Atlas//EventFilter
https://twiki.cern.ch/twiki/bin/view/Atlas//EventFilter
https://twiki.cern.ch/twiki/bin/view/Atlas//CondDB
https://twiki.cern.ch/twiki/bin/view/Atlas//SubFarm
https://twiki.cern.ch/twiki/bin/view/Atlas//CondDB
https://twiki.cern.ch/twiki/bin/view/Atlas//EventBuilding


CHAPTER 7. EVENT FILTER TESTS 7.4. PROGRAM OF TESTS FOR EVENTFILTER@ LST06

to study addition effect against signle algorithm (how load of each PT influences on DB and scalability),
but it was also not completed due to lack of time (manpower), very unfortunatelly.

7.4 Program of tests for EventFilter@ LST06

Based on the goals of EF@LST06 (above) and on the general test plan for LST 2006, the tests of the
EventFilter were subdivided and performed in 3 groups:

• a study/comparison of reading COOL DB data from sqlite/directMYSQL/rackDBproxy with Sub-
Farms of 30 nodes, 2 PTs/node, 1-3-8-15 Subfarms

• a study of the DBproxy caching, comparing the times of the 1st TDAQ configurations (when the
DBproxy forwards requests to the MYSQL server) to the 2nd config (when data is in the DBproxy
cache from the 1st config); 3-8-15 SubFarms of 30 nodes, exercise repeated for 2 and 4 PTs/node

• studying effect of SubFarm size and number of PTs per EF node on DBproxy performance (in
comparison of 1st and 2nd configure)

◦ 3 SubFarms of 30 nodes, 1-2-4 PTs/node

◦ 8 SubFarms of 5 nodes, 2 PTs/node

• run validate TDAQ+EF+algo+DB partition on the highest available/runnable scale (focusing on
scalability issues, i.e. without detailed functionality validation which is not related to the system
scale)

7.5 Particular Tests Results

In the tests studying the performance of algorithm-to-CondDB connections, the configuration times of each
particular PT were recorded, thus, providing N values for each single run of TDAQ+EF+algo partition,
where N is the total number of Processing Tasks (PTs) used. The whole config transition for one particular
PT consists of several steps, which can be roughly divided into two major parts: first, the Athena jobOptions
and libraries are read out from disk/network and loaded into memory, and second, the ”DB access” part
which contains connection to CondDB server (or emulated by file for sqlite or DBProxy), reading data from
CondDB and building corresponding objects in program memory. Thus, the total config time is equal to
”JO/Lib read” (JO = PESA Algorithm JobOptions) part plus ”DB access” time. For each PT, the time
of DB access was recorded as well as the whole time for PT configuration.

The DB data read during the config transition (within DB access time) can be in turn subdivided into
geometry data (it was always read from sqlite files in these tests), magnetic field and some calibration
data (POOL files on local disk were always used), and finally, the conditions data read from the Cond.DB
servers. The performance of PT/Algorithms reading the conditions data in the later case, from Cond.DB
servers was studies mainly in these tests, alternating the single Cond.DB server with DBProxy caching
programs on each EF SubFarm, and with sqlite files read out from local disks. In this case, the particular
references to Cond.DB source were switched in ”dblookup.xml” and ”authentication.xml” files, and special
tools were developed in BASH scripts to map particular EF node to address of DBProxy host of given
SubFarm ”server”. (MySQL DB was always used as Cond.DB).

The parameters of PESA Trigger Algorithm itself were read out using the JobOptions files from local disk.
We did not studied the comparison of the system with JobOptions with respect to the scenario with reading
Algorithm parameters from corresponding TrigConfig. DB, because the amount of this parameters data is
negligible w.r.t. to the Cond.DB data, and such studies were considered by other, DB-study group.

There are two ways to interprete these numbers:

29

https://twiki.cern.ch/twiki/bin/view/Atlas//AtlasTDAQLargeScaleTests2006TestPlan
https://twiki.cern.ch/twiki/bin/view/Atlas//EventFilter
https://twiki.cern.ch/twiki/bin/view/Atlas//SubFarms
https://twiki.cern.ch/twiki/bin/view/Atlas//SubFarms
https://twiki.cern.ch/twiki/bin/view/Atlas//SubFarms
https://twiki.cern.ch/twiki/bin/view/Atlas//SubFarm
https://twiki.cern.ch/twiki/bin/view/Atlas//SubFarms
https://twiki.cern.ch/twiki/bin/view/Atlas//SubFarms
https://twiki.cern.ch/twiki/bin/view/Atlas//CondDB
https://twiki.cern.ch/twiki/bin/view/Atlas//CondDB
https://twiki.cern.ch/twiki/bin/view/Atlas//JobOptions
https://twiki.cern.ch/twiki/bin/view/Atlas//SubFarm
https://twiki.cern.ch/twiki/bin/view/Atlas//SubFarm
https://twiki.cern.ch/twiki/bin/view/Atlas//MySQL
https://twiki.cern.ch/twiki/bin/view/Atlas//JobOptions
https://twiki.cern.ch/twiki/bin/view/Atlas//JobOptions
https://twiki.cern.ch/twiki/bin/view/Atlas//TrigConfig


7.5. PARTICULAR TESTS RESULTS CHAPTER 7. EVENT FILTER TESTS

• since the whole TDAQ finishes a transition (here the ”config” one) when the last component finishes
it (in our case, the PT), then one resulting value is the maximal timing of config among PTs (i.e.
the max in distribution);

• since we are dealing with large number of PTs, order of 100s, then the distributions themseves and
their shapes are also important, because in particular, two distributions may have very different shapes
and mean values, while very close maximums (e.g. due to fluctuations of just a few PTs).

So, the results are presented in two forms: distribution of config. times of all PTs and min/max of these
times.

Note that only one run of TDAQ system was performed/logged for each study case due to the fact that each
particular run needs extra efforts for preparations, checks and start-up itself, and then extra actions after
the run: collecting logs with the measured times, cleaning logfiles from disk and check/cleaning processes
from previous run before new one. Thus, no any significant statistics available within each particular study
case for factors such as external network/CPU loads, network caching, etc. On the other side, since for
each study case the number of EF nodes and PTs used is >> 1, then we can assume good statistics when
considering factors related to functionality of PT/Algorithm/DB components as SW programs.

Test Group 1: compare sqlite/directMYSQL/DBProxy

The table below summarizes the measurements in Test Group 1, presenting min and max values for each
distribution. The green cells correspond to the total times of config transition for PTs, while the yellow
cells correspond to the part of this time spent on DB connection/reading, i.e. without reading JobOptions
and loading libraries.

The min/max values in the table above should be complemented by corresponding distributions of PT
config times shown below. Black curves correspond to the reading Cond. data via sqlite files, the red
curves correspond to direct connections from each PT to single MySQL DB server, and the blue curves
represent measurements with DBProxy on each EF SubFarm. The left column is test with 3 EF SubFarms,
the middle corresponds to 8 SubFarms, and the right one is 15 SubFarms.

30

https://twiki.cern.ch/twiki/bin/view/Atlas//JobOptions
https://twiki.cern.ch/twiki/bin/view/Atlas//MySQL
https://twiki.cern.ch/twiki/bin/view/Atlas//SubFarm
https://twiki.cern.ch/twiki/bin/view/Atlas//SubFarms
https://twiki.cern.ch/twiki/bin/view/Atlas//SubFarms
https://twiki.cern.ch/twiki/bin/view/Atlas//SubFarms


CHAPTER 7. EVENT FILTER TESTS 7.5. PARTICULAR TESTS RESULTS

//– Fig. 1a. Distributions of JO/Lib read at config. times for PT/Algorithm using Cond. data from
sqlite/directMySQL/DBProxy for 3,8,15 SubFarms –//

Test Group 2: compare 1-st and 2-nd configure with DBProxy

Caching effect in DBProxy was studied by comparing timings of 1-st and 2-nd config of EF partitions with
DBProxy applications, for EF partitions of 3, 8 and 15 SubFarms. Tests were repeated for 2 PTs /node
and for 4 PTs /node. Below is the summary table with min/max timing values.

31

https://twiki.cern.ch/twiki/bin/view/Atlas//SubFarms
https://twiki.cern.ch/twiki/bin/view/Atlas//SubFarms


7.5. PARTICULAR TESTS RESULTS CHAPTER 7. EVENT FILTER TESTS

And below there are distributions of PT config timings compared for 3 and 8 SubFarms, first for 2 PTs/node,
and later for 4 PTs/node.

//– Fig. 2a. Distributions of JO/Lib read times for PT/Algorithm configured from DBProxy, comparison

32

https://twiki.cern.ch/twiki/bin/view/Atlas//SubFarms


CHAPTER 7. EVENT FILTER TESTS 7.5. PARTICULAR TESTS RESULTS

of 1-st (top) and 2-nd cached (bottom) configurations, 2 PTs / node –//

33



7.5. PARTICULAR TESTS RESULTS CHAPTER 7. EVENT FILTER TESTS

//– Fig. 3a. Distributions of JO/Lib read times for PT/Algorithm configured from DBProxy, comparison
of 1-st (top) and 2-nd cached (bottom) configurations, 4 PTs / node –//

34



CHAPTER 7. EVENT FILTER TESTS 7.5. PARTICULAR TESTS RESULTS

Also, 1-st to 2-nd configurations can be compared for EF partitions of the same sizes (3 SubFarms of 30
nodes) with various numbers of PTs per EF node: 1, 2 and 4. This is shown in the next topic (just below).

Test Group 3: SubFarmsizes and number of PTs / EF node

Another tests were done for fixed size of SubFarms with variation (comparison) of number of PTs per EF
node: 1, 2 and 4 PTs.

35

https://twiki.cern.ch/twiki/bin/view/Atlas//SubFarms
https://twiki.cern.ch/twiki/bin/view/Atlas//SubFarms


7.5. PARTICULAR TESTS RESULTS CHAPTER 7. EVENT FILTER TESTS

//– Fig. 4a. –//

36



CHAPTER 7. EVENT FILTER TESTS 7.5. PARTICULAR TESTS RESULTS

Test Group 4: run validate at highest scale

The largest EF+algo+DBProxy partition succeeded to run was 15 SubFarms of 30 nodes with 4 PTs per
each EF node, which comprises of 15x30=450 EF nodes, and 450x4=1800 PTs in total.

From Tests of Groups 1-3 we can draw the scaling curves of configuration times against partition size (# of
SubFarms which is proportional to total # of nodes and # of PTs). Note that in the cases of 4 PTs/node
there are two factors which may contribute in bigger config. values: bigger total number of PT as clients of
DBProxy, and on the other side, CPU resource concurence, when each of 2 CPUs runs 2 PTs each instead
of just 1.

37

https://twiki.cern.ch/twiki/bin/view/Atlas//SubFarms
https://twiki.cern.ch/twiki/bin/view/Atlas//SubFarms


7.6. LESSONS AND FOLLOW-UP CHAPTER 7. EVENT FILTER TESTS

General Results

• able to run EF-only partition with egamma algo (top events data preloaded @ SFIemu, no L2) up to
15 SubFarms x 30 nodes x 4 PT/node
• performance (config times) of EF with DBproxy studied @ various modes/sizes

◦ in some cases there is clean improvement (with/without DBproxy) seen
◦ in some the same performance observed (no improvement seen).

Several factors can contribute here explain:
• ◦ Client-type and server-type functionalities/design of DBproxy should understood more exactly

with specific of fast/simultaneous requests from many PT clients;
◦ Overall topology of partition (number/sizes of SubFarms) may influence;
◦ The network HW was not homogenous (connection speeds, number of net switches between

SubFarms) and extra activity/load could influence.

7.6 Lessons and Follow-Up

Problems Observed

• few cases EFD died silently;
• few cases DBconnection initialisation failed / PT crashed;
• DAQ GUI hanged up while DAQ was running for very large partition (15 SF x 30 nodes x 4 PTs,

start of ISL caused this)
• lost processes nodes status – FarmTools are needed/important !

38

https://twiki.cern.ch/twiki/bin/view/Atlas//SubFarms
https://twiki.cern.ch/twiki/bin/view/Atlas//SubFarms
https://twiki.cern.ch/twiki/bin/view/Atlas//SubFarms
https://twiki.cern.ch/twiki/bin/view/Atlas//FarmTools


CHAPTER 7. EVENT FILTER TESTS 7.7. OVERALL CONCLUSIONS

The log files in all major cases are saved, the cases are to be investigated

Follow-Up Actions

• more detailed studies of DBproxy on SLAC/P1 clusters
• ideas for possible DBproxy use:

◦ run permanently on each HLT node (as pmg agents) ?
◦ templated config object for dbproxy aplication
◦ optimal allocation (1 or 2 or 3 per SubFarm) ?
◦ more parametrization of OKS objects improving PMaker

7.7 Overall Conclusions
• Much better w.r.t. LST05 !! (more reliable, able to run directly up to 15 Sf x 30nodes x 4 PTs with

just very few PTs crashed ignored, but not bottleneck for whole TDAQ). Not inacceptable long conf
time (∼ 5 min)
• EF/algo/DBproxy functionality in place and much better under control
• Several/many interesting detailed performance studies done, to be analyzed more
• Still not perfect system and many thing to study in more details improve

Complete:
Responsible: Serge Sushkov
Author: Doris Burckhart 18 Dec 2006
Contributors: Doris Burckhart, Sarah Demers, Serge Sushkov
Last significantly modified by: Serge Sushkov 26 Jan 2007
Not yet reviewed

39

https://twiki.cern.ch/twiki/bin/view/Atlas//SubFarm


Chapter 8

DAQ and HLT Infrastructure
Startup and Fault Tolerance Notes

8.1 DAQ, HLT and EB Infrastructure

8.1.1 Introduction

Infrastructure tests including the online infrastructure, ROS, Level1, EB, and EF were performed with
tdaq-01-06-02 with the aim of verifying its principle functionality on a large scale before other sub-systems
and the integrated system with trigger algorithms were run. Given the overall TDAQ installation and
commissioning schedule, DAQ specific tests were not planned for the LST but not excluded. Basic state
transition timing measurements were done. During the process of getting the TDAQ software system up
and running on a large scale, many problem situations occurred. Studies of these situations are reported
in the chapter ’Problems found and remarks to Fault Tolerance’.

Initially, tests were performed on an installation of SLC4 on 4 nodes where the Linux system was installed
as 32 bit architecture with the native SLC4 release of tdaq-01-06-02. When entering running state, the
SFis systematically crashed and the issue was reported. No further tests were performed on this platform
and the SCL3 emulation mode on SCL4 nodes was used from then on for all the tests.

A LST06 specific setup segment was used, where the infrastructure processes are distributed over a set of
10 nodes. Distributed rdb servers were residing on nodes where only one controller was running (this is the
way PartitionMaker distributes them).

From 100 up to 600 nodes were used for the infrastructure tests without algorithms, using only tdaq-01-
06-02. A partition type was prepared which included ROS, LVL2, EB, EF segments. It was possible to
bring the partition up to running state and keep it running for some time. Problems were in many parts of
the system. Most prominent were the problems with the setup component and the problems with the stop
and the unconfigure transition, which concerned the LVL2, EF and EB processes. While - with a number
of retries and a great deal of patience - it was possible to setup, configure and start the partition, the
stop transition normally failed. Usually DFM, SFIs or SFOs died. The situation could not be recovered
(numerous tries) and an orderly shutdown was not possible. The infrastructure needed to be removed with
ipc rm .

As for the running phase, many variants to the HLT and EB parameter settings were probed and finally a
reasonably stable run was achieved. Dataflow timing and throughput measurements were not in the scope
of the tests, given that there were no algorithms running and there was no separate control and dataflow

40

https://twiki.cern.ch/twiki/bin/view/Atlas//PartitionMaker


CHAPTER 8. DAQ AND HLT INFRASTRUCTURE STARTUP AND FAULT TOLERANCE NOTES
8.1. DAQ, HLT AND EB INFRASTRUCTURE

network. These test allowed to adjust the system parameters and the time out parameters to the size of
the system and the specifics of the farm.

Being in the forefront before other tests were performed at the same scale, many problems concerning
the infrastructure could be identified before more complex tests including trigger algorithms and database
access would be performed. The problems were logged in the LST06 elog, reported to the developer and
screen shots were taken. Some bugs were fixed quickly, and a patch was applied, a workaround was found
for some others. The remaining and more complex points are discussed in the chapter ’Problems found
and remarks to Fault Tolerance’.

8.1.2 State Transition Timing Measurements of the Infrastructure

Run Control State Transitions

The partitions were produced with PartitionMaker, which consisted of a Segment with Controllers and
example applications. The example applications are controlled applications and respond to the state
transition request of the controller and publish their state but do not perform any other time consuming
operation. The measurements show the overhead which is generated by the control infrastructure. Timing
measurements have been recorded for a set of partitions including 400, 600, 800 and 900 controlled example
applications. The generation of a such a partition, in which the ROS application is replaced by the example
application for ∼400 nodes took ∼1/2 hour with PartitionMaker and even more time for the larger ones.
Unfortunately, even having searched for and explored numerous ’tricks’, it was not possible to generate
clean partitions with PartitionMaker which contained more than 1 example application per node.

41



8.1. DAQ, HLT AND EB INFRASTRUCTURE
CHAPTER 8. DAQ AND HLT INFRASTRUCTURE STARTUP AND FAULT TOLERANCE NOTES

Graph 1 shows the timing values of the transitions for the 4 partitions, averaged over a couple of runs
(2-6, depending on the partition). Graph 2 shows the same measurements, without the boot and shutdown
transition for better visibility of the values. The boot transition, where all the participating processes are
bootet, is network dependant and no stable values were measured. The trend of the transitions configure,
start, stop and unconfigure is very flat, which corresponds to the measurements taken during the Large
Scale Tests 2006 [Ref1]. The difference in values for the different transitions correspond to the number of
internal transisions, as explained in Chapter 2, AtlasTDAQOperationalSequence. The number of internal
transitions are for configure:2; start:2; stop:5; unconfigure:2. It must be noted that configuration database
read and publishing operations occur during the configure step which results in a higher timing value
compared to the other transitions. .average value for the partition controlling 900 example applications
are shown in graph3 and the same in graph 4 without the boot and the shutdown transition. One can
see that an internal state transition amounts to 0.5 seconds. This good value obtained during the 2005
tests, where 0,7 s was obtained for an internal transition of 1000 controlled example applications, has even
slightly improved.

Setup timing:

During the 2005 Large Scale tests, the setup component was already reported to be problematic, with a
value of 16 minutes to set up a partition with 2000 example applications on 700 nodes [Ref1].
This year, the time to set up a partition on 900 nodes was of the order of 20 minutes when having the
pmg agents already running. In addition, the setup component gave problems when running on a large
scale and the details are reported in the following chapter.

8.1.3 Problems found and remarks to Fault Tolerance

During the process of DAQ/HLT system preparation (using tdaq-01-06-02) during the tests introduced
at the beginning of this chapter, numerous issues came up and situations occurred in which observations
about the fault tolerance behaviour of the system were made. Those are reported here.

Setup

The setup is a vital component and the first one when running the system. Therefore it is most prominent
and possible problems affect everyone who wants to run the TDAQ system. The problems reported here
do not matter really on small scale which explains why they had not been seen before. Even the system
size which is used in point 1 currently is ’small’ compared to the system used here and the timing does not
increase linearly with scale but much steeper. </o:p>

The time to start the pmg agents was clearly very long, the setup starting with pmg agents running on a
system with 900 nodes took about 20 minutes. As the agents will be started by the system in the future,
primarily the setup time starting with running pmg agents should be investigated and improved further.
The time to subsequently execute the test on the pmg agents, an action which is performed by setup each
time the partition is launched, was also far too long. Following dedicated tests by the developer, the setup
time could be reduced to a reasonable value towards the very end of the LST06 testing period by using a
new knowledge base.

After this modification, the time merely for the hardware test was still 7 minutes for 900 agents. This HW
tests was then normally skipped via an option in setup daq. It should be noted that during hundreds of
test runs on the large scale the hardware test never failed, once the pmg agent test was passed successfully.

On a large system, it can happen that the time out is reached before the end of the tests, even when set to

42



CHAPTER 8. DAQ AND HLT INFRASTRUCTURE STARTUP AND FAULT TOLERANCE NOTES
8.1. DAQ, HLT AND EB INFRASTRUCTURE

a large value. The retry option currently initiates a complete retry, meaning it tests once more all agents
which had already been tested, instead of continuing. However, an (unintended) feature made that, once
the timeout was reached, the setup still accepted the outstanding test status information from the agents
which had not been handled yet and were still in the queue because setup used 100% CPU. This was helpful
and should be kept. It was possible to enable an individual agent, but the result was not propagated up
the chain and therefore this feature is not of use. One had to initiate yet another test on the higher level.
In this release version one had to test the higher and highest parent component, which in turn then tests
all its children again, which once more costs time. In simple cases it is possible to re/setup one component
and then ’ignore and continue’ directly. But this options was only available once the time out on retry had
expired.
A clear policy with a number of options to retry partially or globally, and all the options available at all
phases of the setup is desirable. It would be useful to have a ”remove all absent nodes” feature. Clicking
through nodes individually becomes time consuming when the partitions get very large. A ”retry all nodes
not in initial” feature would be good.
If the time out is chosen to be larger than the estimated time to set the system up, and then for example
a node is unavailable then one has to wait until the end of the time out. For a retry one would have to
wait the full time out time (i.e. 20 minutes for 900 nodes) to be able to continue if one wants to ’ignore’
the faulty node (in a case where it does not host a vital component but for example a PT or L2PU This
is unfortunately the reason why the logger was often disabled. The setup test for the logger always gave
an error even that it was started correctly. The MySQL server was running on a dedicated node, but the
test was searching for a standard server node. The nodes assignment is apparently not easy to change in
the system. This meant that even when the system status was otherwise correct, one would have to wait
for the time-out to be expired. For all items controlled by setup, it would be good to be given the choice
of a quick retry, acting only on those elements which had failed before, and with a timeout which can be
different from the first one to avoid having once more to wait for many minutes.

When the infrastructure is started, the root controller was always red, also other components were some-
times red, and switched later to green. This is confusing. The display should not reflect the internal
response of a test while the internal retries are still going on but rather display a global state reflecting that
the test is on-going (i.e. blue), in a different colour like for the other tests. The font size should adjust
to the number of nodes to be displayed. It can be much smaller, this could avoid a lot of scrolling. The
information could also be presented in several rows.

A useful feature, provided as an option, would be the following: If a test on a node fails, then it should be
checked if to this node only non-vital components (i.e. EFD, PT) are assigned. Up to a certain percentage,
which should be a configurable parameter, setup should only give a warning message, remove or disable
those processes from the partition and continue with ’success’.

In one configuration, without multiple rdb servers, one of the pmg agents was not started and not in the list
of agents to be started. It was traced down to a problem in the setup test concerning template controllers
in non-HLT segments. This problem occurred rarely and not normally when setting the multiple rdb servers
in PartitionMaker because of the way the controllers are distributed (there the pmg agent was anyway
started for another process).
When using nodes which have not been used before then there is a pmg problem trying to create the
/tmp/pmg file from 2 applications at the same time. The output file reports failed creating ’/tmp/pmg
directory’ and the err file reports ’file not found’. The second time the partitions is started on the same
set of hosts this error does not occur because /tmp/pmg exists.

Setup did not start pmg agents of segments with template Applications other than HLT; As the controllers
are also template this only sometimes worked by chance namely when another component was also assigned

43

https://twiki.cern.ch/twiki/bin/view/Atlas//MySQL
https://twiki.cern.ch/twiki/bin/view/Atlas//PartitionMaker


8.1. DAQ, HLT AND EB INFRASTRUCTURE
CHAPTER 8. DAQ AND HLT INFRASTRUCTURE STARTUP AND FAULT TOLERANCE NOTES

to that node.

Proposal

The setup is a vital component and the first one when running the system. Therefore it is most prominent
and possible problems affect everyone. As feedback from the tests it is suggested to revisit the user interface
functionality.
When running a big system, the following factors are important:
1) time it takes to start the system
2) options to continue in case of a time-out on the start of the pmg agents, the HW checking or the start
of the infrastructure; time outs optionally to be set different for different phases (1st try, 2nd try,..)
3) recovery, retry, and continue options during all data-taking phases, not only at the occurrence of the
timeout, optionally automatic, configurable, and manually.
4) automatic propagation of a recovered component test status up the setup component hierarchy tree
5) clear presentation of the status of the involved components as a result of the test which setup performs

Applications crashing at Boot

During the boot transition on large scale, it happened rather frequently, that some processes didn’t boot.
This was either due to the occurrence of a time-out, to a failing node but also to a problem with the
application.
In a number of cases, a single process would die (SIGV, as reported above). In the case that this is a
non-vital process (a PT or L2PU), a retry is performed and the process starts correctly. Tests with an
integrated partition on 500 nodes with tdaq-01-06-02, multiple rdb servers and dedicated setup segment,
release taken from afs, were investigated. In this situation all the nodes involved were up and responding
well. A segmentation fault on one PT ( problem in glibc, segmentation fault in libc.co.6) out of hundreds
in the partition (2 PTs per node) would occur. At the next boot the same application started without
problems but the same type of error occurred in one L2PU out of hundred (2 L2PUs per node). More details
are reported in the elog. This underlines the need and importance of correctly designed and implemented
fault tolerance on a large system.
When running from afs, one of the PTs reported error on opening the shared library liboh.so. This is
most likely due to the simultaneous access to the same file by a large number of PTs. Therefore the local
installation was used later on for the test.

IGUI

When receiving a large amount of messages, the IGUI gave problems in the RC panel (separation between
the 2 sides of the panel could not be re-established after having moved to single view) and in the detached
MRS panel. The latter was blocked until long after the partition and the IGUI were terminated and finally
he process had to be killed manually.

When stopping a large partition which is in fault state, the IGUI took 100% cpu when running on one of
the lxb nodes. The same was true when running the IGUI locally on the (local and not high performant)
desktop. When running the IGUI on an otherwise unused and very high performant node (backup node for
the log service ) then this run well.

Stop, Shutdown and Cleanup

The stop transition was critical and normally did not finish. As a consequence, the only possible command
then was shutdown. This command had to be given many times, finally the whole infrastructure needed

44



CHAPTER 8. DAQ AND HLT INFRASTRUCTURE STARTUP AND FAULT TOLERANCE NOTES
8.1. DAQ, HLT AND EB INFRASTRUCTURE

to be removed. All this took considerable time. Often processes were still hanging.
An ipc rm on the entire partition, and subsequent ipc cln did not clean the field: when starting the same
partition up again, PT error messages appeared after having started the infrastructure after the boot.
The PTs didn’t seem to respond to the global ipc rm command and re-connected. Only when removing
the initial partition and with it the pmg agents this effect disappeared.create a sharedHeap per partition:
if EF processes don’t stop gracefully, then this file it is left over on /tmp. As the name includes the parti-
tion name, there could be many of these large files left. A general cleanup should include removing this file.

SFIs died systematically after the stop/start sequence.

Run Control

For all items controlled by run control, it would be good to be given the choice of a quick retry, acting
only on those elements which had failed before, and with a timeout which can be different from the first
one to avoid having once more to wait for many minutes.
At boot, it would happen that one or a few processes did not boot in the timeouts time. It also happend
that a process failed and could not be restarted, so needed to be removed. A selective retry was possible,
but the change of state was not seen automatically by its controller, and one had to continue the retry up
the chain by hand. An automatic way of having the change of state propagating up, or a retry top down
would be helpful.

Like for setup, a useful feature, provided as an option, would be the following: If a test on a node fails,
then it should be checked if to this node only non-vital components (i.e. EFD, PT) are assigned. Up to
a certain percentage, which should be a configurable parameter, run control should only give a warning
message, remove or disable those processes from the partition and continue with ’success’. In addition,
dependancies should be taken into acccount. If one EFD fails and is taken out, the corresponding PTs
should also be taken out automatically.

The number of retries for processes to be started after failure or when having died should be a parameter
which one can set by the user.

DVS

The DVS crashed when more than 100 nodes were in use. The debug version did not have this problem
and was used. When running from afs, cmtconfig had to be set to point to slc4.

Log service

The log service was available and installed into a dedicated node. It was apparently not possible in setup to
make the test for the logger pointing to this node. Therefore, setup failed each time when the logger was
included. As a consequence, one had to wait for the timeout and the appropriate options to continue to
appear. To avoid this long waiting (up to 20 minutes, see description above about setup), the log service
was unfortunately not used systematically.

Messages

Many applications send far too many messages. In a large system, these messages are multiplied by a
factor 100 or 1000 thus flooding the system and making it very hard to ’see’ the real problems. Only the

45



8.1. DAQ, HLT AND EB INFRASTRUCTURE
CHAPTER 8. DAQ AND HLT INFRASTRUCTURE STARTUP AND FAULT TOLERANCE NOTES

really important messages should be send and they could be grouped by a centralized server.

Templated Applications

The introduction of templates for applications and for run control was very useful. Problems however are
the very long name which has been chosen. Normally it does not fit into the window, or as a result, other
information which follows in the same line is not visible. This is not only true for the IGUI but also in
other GUIs and tables. On a large system, lots of scrolling right to left is involved in order to understand
the full picture, which can be unnecessarily tiering and annoying. I suggest that this problem should be
changed at the source level, changing the name itself. It could otherwise be solved at the GUI level with
the disadvantage that each GUI would have to treat it separately, make a special case only for template
applications, and have the displayed name differ from the original one (possibly displayed differently in
different GUIs) and thus loose the authenticity.

It would be very helpful if this change could be done. For example, instead of adding ’TemplateApplication’
to the name, it could be very much shortened, like for example ’TA’. Other solutions could be equally good.

Tools

The Farm tools PartitionMaker PartitionRunner were under development during the tests and not part of
the release . Although partially dependant of each other, the versions did not work well together.

The farmtools did not work as expected. </p:colorscheme> </span> synchronization was done and
claimed Ok but verification showed that this was incorrect. The Hardware file production up to O(100)
nodes was working but failed when going larger. The underlying worm technology seemed to have hit
serious problems. One of the consequences was that s ome farm tool processes were left hanging for days
taking 100 % CPU time. This is hard to find on a cluster of 1000 nodes and when the tool to be used was
the same that had originally caused the problem. Another effect was that the farmtools left large files on
/tmp with names build of random numbers. Those are hard to check for and to remove in bulk operations.
In addition, Cern IT reported attacks to the Cern security server nodes.

The * PartitionMaker* has the python pointer hardcoded. This gave a problem when having to point to a
particular version of python. Many features which had to be or would have had to be used at LST06 were
not available in the version of PartitioMaker at the time. For some of them, a workaround was available.
Details will be supplied for the upcoming review of the PartitionMaker.

Opmon was used for the automatic recording of the state transitions. This worked well. It was experienced
that it would be desirable to add a time stamp to each of the transition as an additional help to trace back
a situation.

Major updates :
– Main.DorisBurckhart - 2 March 2007

46

https://twiki.cern.ch/twiki/bin/view/Atlas//PartitioMaker


CHAPTER 8. DAQ AND HLT INFRASTRUCTURE STARTUP AND FAULT TOLERANCE NOTES
8.1. DAQ, HLT AND EB INFRASTRUCTURE

Complete:
Responsible:
Author:
Contributors:
Last significantly modified by:
Not yet reviewed

47



Chapter 9

Monitoring Tests

9.1 IS, EMON, and Gatherer tests

9.2 Introduction

9.3 Gatherer

The Gatherer application is designed to gatherer monitoring information such as histograms, scalars, and
vectors from the Information Service, IS. In the final ATLAS running there will be many nodes processing
the data. Each node can then produce monitoring information which is then published on the IS. The
Gatherer will make a sum of this information and publish it back to IS. The published information can
then be used by other monitoring applications which would need the full statistics, ie the Data Quality
Monitoring Framework(DQMF) or the Monitoring Data Archiver (MDA). Only histogramming functionality
was tested here (other functionality not available in this release).

9.3.1 Program of Tests for Gatherer

The original plan for the LST tests for the Gatherer was two parts:
1 Get some timing measurements while changing the parameters

◦ the number of histogram per node, N
◦ the number of bins in each histograms, B
◦ the type of histograms, ie 1d, 2d, 1p, D
◦ the type of bins, ie float, double, T

2 Use this timing information to determine an optimal configuration of Gatherers to be used to sum
histograms produced by the L2PU and PT algorithms.

We only however managed to finish 1) since there was no oppertunity to include the Gatherer in the
partitions produced for doing L2 and EF tests. This was mostly due to the timing of the tests.

9.3.2 Configuration of Tests

The Gatherer timing tests were done on 207 nodes while changing the parameters listed above under 1).
The machine on which the Gatherer was running was a 2.8 GHz machine with 2.0 GB of memory. The
network speed was 10 GB/s. The number and type of histograms indicated were produced from a given
node and send to a server which was running on an independent machine. The Gatherer was then run
on a seperate machine from the server. The Gatherer would then sum over all providers, ie nodes, and
produce a summary for each histogram. ie for the 207 nodes we have 207xN histograms and end up with
N summary histograms.

48

https://twiki.cern.ch/twiki/bin/view/Atlas//DataQualityMonitoringFramework


CHAPTER 9. MONITORING TESTS 9.3. GATHERER

The histograms were published on the server only once and not updated. The Gatherer retrieves the
histograms off of the server every 10 seconds and makes a new summary. The retrieval of the histograms
from the server is done in pull mode.

9.3.3 Timing Results

We see that the timing results looked reasonable and are mostly linear. The profile histogram timing was a
bit higher than expected due to warning messages from ROOT which will be suppressed in future releases.

This plot shows the time to receive the histograms in the various configurations. We see a nice linear
distribution and we also see the timing increase with histogram size as expected.

The following plot shows the time it took to send the summary histograms to the server. The distribution
is slightly less linear than the receive time.

49



9.3. GATHERER CHAPTER 9. MONITORING TESTS

The following plot shows the time to Receive 20x207=4140 histograms 1d float histograms with various
bin sizes. As expected we see a nice linear distribution.

Timing Results - Histograms vs Providers

The Plot below was done during the Small Scale tests in preparation for the LST. This plot shows that
for a total of 5000 histograms the Gatherer receiving time varies significantly as a function of number of
histograms/provider; For the 5000 objects the timing varies between 1-8sec. We observe that the timing is
much less if one loops over a small number of histograms but over many providers. This is because for a
given histogram name the Gatherer produces a histogram iterator. The time for producing these iterators
is significant with respect to receiving times. So the overhead for producing each iterator adds to the total
receive time. That is why for the 1000 histogram 5 provider scenario we see such a large timing. In this
case 1000 iterators are produced.

In a scenario where we have a large number of histograms, this tells us that it’s probably best not to assign
a Gatherer application to a given subFarm, where the number of nodes would be of order 10 and histogram
number could be large. It’s more efficient to collect some subset of histograms over all nodes, ie all LAr
histograms from a given algorithm.

50



CHAPTER 9. MONITORING TESTS 9.4. INFORMATION SERVICE (IS) TESTS

9.3.4 Summary and Conclusions

The Gatherer timing results show good linear performance as a function of bin size, histogram type,
histogram bin type, and number of histograms. The result of tests done over varying histogram and
provider numbers shows the best configuration for the Gatherer is to run over a large number of providers
and a smaller number of histograms. One should be aware of the type of histograms being summed in
order to keep the timing in an appropriate interval. When necessary more Gatherers can be added into a
cascade of Gatherers to keep within the allotted time (See diagram below).

9.4 Information Service (IS) tests

The Information Service (IS) component is used to share user defined information between applications in
the Trigger/DAQ system. It is responsible for a large number and potentially high rate of the monitoring
data exchange. Last year a comprehensive set of tests have been performed for the IS and results of these
tests are described in the test report document. Recently a number of new functionalities have been added
to the IS. The main aim of the IS tests this year was to investigate a possible impact of these new features

51



9.4. INFORMATION SERVICE (IS) TESTS CHAPTER 9. MONITORING TESTS

to the IS performance and scalability. In order to get this information some of the last year tests have been
repeated with the new IS implementation.

9.4.1 Test description

Test applications

There are three applications which have been used for the IS tests:

• is server - this application implements the IS repository functionality.

• is lst provider - this application is a configurable test for the IS information provider.

• is test receiver - this application implements a configurable test for the IS information receiver.

• is cmd - this application can be used to send commands to the IS infomation providers

All of them are part of the DAQ/HLT-I release. One can run them with the #8216;-h#8217; flag to see
their usage.

Hardware description

Slightly more then 500 computers have been used for the IS tests. One dedicated computer (dual PIV 2.8
GHz with 4 GB memory) was used to run a single IS server application. Fifteen machines (dual PIV 2.8
GHz with 2 GB memory) have been used to run 1, 3, 5, 10 and 15 IS information receivers with only one
receiver per machine. Another 500 machines were used to run from 1 to 6 IS information providers on each
of them simultaneously. The slowest section of the network connection between those computers was fast
Ethernet.

Tests description

Initially 6 is lst provider applications have been started on 500 computers which results in 3000 infomation
providers in total. Each of those applications created one information item in the given IS server. Then
several test series with different number of information receivers have been performed. Here is a descriptions
of the steps which have been done for an individual test serie:

1 N is test receiver applications have been started on the 15 dedicated machines, one per machine.
Each of them subscribed for all information in the given IS server. Number N was set to 1, 3, 5, 10
and 15 for different test series.

2 is cmd application was used to send the ”start” command to M infomation providers. Each informa-
tion provider started to update its own infomation object once per second as soon as it received this
command. Every infomation provider has updated its infomation 100 times. Number M varies from
500 to 3000 with step 500.

3 All information receiver applications have been stopped.

9.4.2 Tests Results

Two figures below show the mean time for one information update as function of a number of concurrent
information providers and receivers. The first plot has a logarithmic scale in order to present the complete
results.
Mean value for one information update (logarithmic scale)

52



CHAPTER 9. MONITORING TESTS 9.4. INFORMATION SERVICE (IS) TESTS

The following figure shows the same plot as the previous one but with the normal scale along Y axis in
order to present the behaviour of curves in more details.
Mean value for one information update

9.4.3 Summary and Conclusions

Presented results are very similar to the ones, which have been obtained in July 2005 (during the last LST)
using very similar hardware configuration. This demonstrates that a number of new functionalities, which
have been provided for the IS, do not made negative impact to the IS scalability and performance.

53



9.5. EVENT MONITORING (EMON) TESTS CHAPTER 9. MONITORING TESTS

9.5 Event Monitoring (EMon) Tests

The Event Monitoring (EMon) component can be used to sample events from different points in the
data flow chain and distribute them to monitoring applications written by users. Using a code framework
provided by EMon, users can contribute their own applications in order to sample events from a certain
sampling address, all sampled events matching certain selection criteria. Such a combination of event
sampling code, sampling address and selection criteria is called an event channel.

In order to prevent a bottleneck in event channels when large numbers of monitoring tasks ask for events
from the same channel, a tree-based approach finds application. Only a single root task is directly attached
to a sampling channel, all the remaining task are attached to this root task in a tree-based manner. A set
of tasks arranged in such a tree, requesting events from a certain channel is called a Monitoring tree.

A major goal of the 2006 tests is to prove the scalability of this approach. Having performed these tests
already during the LST phase in 2005, a bug has been found which - in the version used during the 2005
tests - prevented actual data from being transferred from root monitoring tasks and their children. As this
bug has been fixed, the main purpose of the 2006 tests was to repeat the measurements of the 2005 tests
with a current version of EMon.

9.5.1 Test description

The following three applications have been used for the EMon tests:

• emon conductor - a central application managing EMon task subscriptions and sampler registrations
and controlling the tree topology of tasks

• emon push sampler - an application generating random events and pushing them to subscribers

• emon task - an application requesting events from an event sampler, possibly forwarding them to
any attached child tasks

About 50 computers have been used for the EMon tests. A single emon conductor and a single emon push sampler
where running on two dedicated machines. A variable number of up to 50 emon task applications has been
started on the remaining machines, all of them requesting events from the same event channel in the
emon push sampler.

In order to measure the effect of different tree topologies, an additional parameter k was used to specify
the tree type of the Monitoring tree. In case of k=1 , tasks have been arranged as a unary list, in case k=2
as a binary tree. In case of k=5 each task had up to 5 child monitoring task it needed to forward events
to.

In order to fully include the effect of event forwarding in the measurements, only the rate at which the
bottom most (so-called leaf) task of a Monitoring tree could process events has been recorded. This
naturally is the worst-case event rate of a Monitoring tree, all parent tasks necessarily have a higher event
rate.

As the EMon component can be used to sample events from several different points in the data flow chain
of the final experiment, the size of the events communicated via the EMon framework varies in a range
between 4K and 2 MB. Accordingly both ends of this event size range have been tested during the 2006
tests.

54



CHAPTER 9. MONITORING TESTS 9.5. EVENT MONITORING (EMON) TESTS

9.5.2 Test Results

These figures show the rate at which the leaf monitoring task of a task could receive events in events/second
for an event size of 4K and for different values of the tree type k. There is a remarkable difference in the
event rate between a tree consisting of a single task and a tree consisting of 5 tasks. A single task can
receive 4 K events at a rate of about 19,000 per second. In a k=1 tree consisting of 5 tasks, this value
drops to roughly 50 % or 9,500 events per second. This drop likely results from the overhead involved with
the forwarding thread and the process of copying events for child tasks. This value of 9,500 events per
second remains however constant with an increasing number of tasks connected to the tree. As in cases
k>1 each task has to forward each event to several child tasks, this event rate is naturally lower, the higher
the value of k is. With values of k=2 and k=5, the event rate again stays constant when increasing the
number of concurrent tasks above a value of 5. The performance loss of k=2 when compared to k=1 is
roughly 20 %. The performance loss of k=5 compared to k=1 is roughly 50 %.

For k=1, the transfer rate per task levels off at roughly 35 MB/s which is about 280 MBit/s.

55



9.5. EVENT MONITORING (EMON) TESTS CHAPTER 9. MONITORING TESTS

56



CHAPTER 9. MONITORING TESTS 9.5. EVENT MONITORING (EMON) TESTS

In a second test series, an event size of 2 MB has been used. Again the event rate drops about roughly 45
% from 58 to about 31 events per second as soon as tasks are involved with event forwarding. Again this

57



9.5. EVENT MONITORING (EMON) TESTS CHAPTER 9. MONITORING TESTS

value stays constant when the number of concurrent tasks is further increased.

58



CHAPTER 9. MONITORING TESTS 9.5. EVENT MONITORING (EMON) TESTS

These last two figures show the system transfer rate of the whole Monitoring tree. Here the number of
tasks receiving events has been multiplied by the worst-case transfer rate of the leaf task. In a centralized

59



9.5. EVENT MONITORING (EMON) TESTS CHAPTER 9. MONITORING TESTS

solution with the event sampler or a central distribution component representing a bottleneck, this transfer
rate would remain constant while the transfer rate per task would linearly drop with an increasing number
of tasks. As in the tree-based approach of EMon, the bandwidth of machines running Emon tasks is used
for distribution, the system transfer rate linearly increases with an increasing number of tasks. Using an
event size of 2MB and the bandwidth of 50 machines running monitoring tasks, the total transfer rate of
a sampling channel reached roughly 2.6 GB/s which is about 20 GBit.

60



CHAPTER 9. MONITORING TESTS 9.5. EVENT MONITORING (EMON) TESTS

61



9.5. EVENT MONITORING (EMON) TESTS CHAPTER 9. MONITORING TESTS

62



CHAPTER 9. MONITORING TESTS 9.5. EVENT MONITORING (EMON) TESTS

9.5.3 Summary and Conclusions

The tests have proven the scalability of EMon’s tree-based approach. They have however also shown some
points that may require further improvement. One should further investigate the exact reasons for the drop
in the event rate when comparing a single task to a tree consisting of five tasks and see how this drop in
the event rate can be attenuated.

Complete:
Responsible:
Author: Haleh Hadavand 19 Jan 2007
Contributors: Doris Burckhart, Haleh Hadavand, scholtes
Last significantly modified by: scholtes 12 Feb 2007
Not yet reviewed

63



Chapter 10

Summary, Conclusions and Follow-up
Actions

10.1 Summary, Conclusions and Outlook

10.1.1 Introduction - under construction

10.1.2 Summary and Conclusions - under construction

The conclusions remain to be written, once the documentation about Lvl2 and DBStressor is included.

In LST06 for the first time the DAQ/HLTsystem was run successfully with full configuration from databases,
and at large scale </o:p>
• Separate tests for Level2 and for EF were run </o:p>
• Configuration timing were found to be reasonable and apparently not dominated by database access

</o:p>

A number of bugs found and - fixed ”online” or immediately after the LST </o:p>

</o:p>

The complete DAQ/HLT system with ROS, Level2, EB and EF without algorithms was run on up to 600
nodes </o:p>

Monitoring and Run Control timings OK </o:p>

Need to work on Fault Tolerance throughout the system </o:p>

Still improvements necessary in the area of Farm Tools, PartitionMaker </o:p>

Operational Monitoring Tools to be put in place </o:p>

We

10.1.3 Outlook

More complete tests foreseen on the hardware installed at Point1 </o:p> with the adequate network
structure within racks </o:p>

64

https://twiki.cern.ch/twiki/bin/view/Atlas//PartitionMaker


CHAPTER 10. SUMMARY, CONCLUSIONS AND FOLLOW-UP ACTIONS10.1. SUMMARY, CONCLUSIONS AND OUTLOOK

• using the pre-series machines, then also new 8-core nodes </o:p>

• With all four trigger slices configured from TriggerDB </o:p> (In LST one e-gamma slice from DB
- all slices only with jobOptions for Level2) </o:p>

• Configure LVL2 and EF concurrently </o:p> in the same partition </o:p>

Investigate details of trigger algorithm setup timing at configuration transition, esp. CPU intensive parts
</o:p>

Rack-specific configuration of CORAL to be integrated into the partition </o:p>

• DbProxy node name depends on rack - had to use inelegant scripts in LST </o:p>

Further tests at SLAC (DbProxy specific) and Manchester</st1:place></st1:city> (trigger specific) and
Point1 (integration)

HLT configuration via DbProxy caches was a success </o:p>

• We have a proven way to scale from one to many HLT racks </o:p>

• SLAC group now working on a direct DbProxy to Oracle connection </o:p>

• DbProxy used for data varying for each run: conditions + TriggerDB </o:p> Geometry and magnetic
field map are taken from files </o:p>

</o:p>

Cashing:

• At node level, caching could be done as well, but we have nodes with 2*4 cores each already today
- more cores to come </o:p>

• need to optimise memory consumption and initialisation effort - options: </o:p>

• global (initialization) thread + multiple event threads share constant data (geometry, fieldmap,...)
</o:p>

• initialization process + multiple event processes could use shared memory segment for constant data
</o:p>

• options for sharing are now studied in Athena architecture team, for L2, EF, and possibly T0 </o:p>

• Athena object store (StoreGate), if in shared memory, could be loaded with ready-made object data
from a file in one go to save a lot of initialization time </o:p>

65

https://twiki.cern.ch/twiki/bin/view/Atlas//TriggerDB
https://twiki.cern.ch/twiki/bin/view/Atlas//DbProxy
https://twiki.cern.ch/twiki/bin/view/Atlas//DbProxy
https://twiki.cern.ch/twiki/bin/view/Atlas//DbProxy
https://twiki.cern.ch/twiki/bin/view/Atlas//DbProxy
https://twiki.cern.ch/twiki/bin/view/Atlas//DbProxy
https://twiki.cern.ch/twiki/bin/view/Atlas//TriggerDB
https://twiki.cern.ch/twiki/bin/view/Atlas//StoreGate


10.1. SUMMARY, CONCLUSIONS AND OUTLOOKCHAPTER 10. SUMMARY, CONCLUSIONS AND FOLLOW-UP ACTIONS

</o:p>

Complete:
Responsible:
Author: Doris Burckhart 18 Dec 2006
Contributors: Doris Burckhart
Last significantly modified by: Doris Burckhart 18 Dec 2006
Not yet reviewed

–

66


	Abstract
	The Large Scale Tests 2006
	Scope, Aims and Testbed description of LST 2006
	Software releases
	Aim of the DAQ infrastructure tests
	Aim of the Event Filter infrastructure tests
	Aim of the HLT tests
	Database test aims
	Testbed Description
	Test Organisation and Approach

	Operational Sequence for the State Transition Timing Measurements
	Tools for Test Execution and Analysis
	Introduction
	Tools and Utilities
	Test execution


	Online Databases Used in the Tests
	Database Support
	Servers available
	Databases and connection strings
	Location of files on /afs and local /pool
	Data volumes
	dblookup and authentication files
	Tools used to populate the databases
	Things to remember...

	ATLAS DBProxy
	Introduction
	Proxy Trees
	Usage
	Recognized Commands
	Example Implementation in a Partition
	Timing Studies
	Comments


	Configuration of the High Level Trigger through the TriggerDB
	Configuration of the High Level Trigger through the Trigger Configuration Database (the TriggerDB)
	Introduction
	Configuration Technology
	The Trigger Configuration Database
	Configuring the Level 2 and EventFilterTrigger Applications

	Large Scale Test Objectives and Results
	Goals of the trigger configuration group during the Large Scale Tests 2006
	Preparation of the TriggerDB and OKS
	Test Results
	Encountered Problems


	Tests with DBStressor
	Tests of ROD configuration from Oracle
	Introduction
	Main heading

	DBProxy tests with DBStressor
	Introduction
	Test Setup and Limitations
	Results and Conclusions


	Level 2 Tests
	Trigger Level 2 tests
	Introduction
	Basic "stop watch" measurements
	Measurements of DbProxy connect/disconnect


	Event Filter Tests
	Event Filter tests
	Introduction
	Main goals for EventFilter@ LST06
	Program of tests for EventFilter@ LST06
	Particular Tests  Results
	Lessons and Follow-Up
	Overall Conclusions

	DAQ and HLT Infrastructure Startup and Fault Tolerance Notes
	DAQ, HLT and EB Infrastructure
	Introduction
	State Transition Timing Measurements of the Infrastructure
	Problems found and remarks to Fault Tolerance


	Monitoring Tests
	IS, EMON, and Gatherer tests
	Introduction
	Gatherer
	Program of Tests for Gatherer
	Configuration of Tests
	Timing Results
	Summary and Conclusions

	Information Service (IS) tests
	Test description
	Tests Results
	Summary and Conclusions

	Event Monitoring (EMon) Tests
	Test description
	Test Results
	Summary and Conclusions


	Summary, Conclusions and Follow-up Actions
	Summary, Conclusions and Outlook
	Introduction - under construction
	Summary and Conclusions - under construction
	Outlook



